DIGITAL ELECTRONICS LAB MANUAL FOR

IV SEMESTER

NAME
REG NO
BATCH

DEPARTMENT OF ELECTRONICS \& COMMUNICATION

JAIPUR INSTITUTE OF TECHNOLOGYGROUP OF INSTITUTIONS

DO'S

1. Be regular tothe lab.
2. Follow properDress Code.
3. Maintain Silence.
4. Know the theory behind the experiment before coming to the lab.
5. Identify the different leads or terminals or pins of the IC before making connection.
6. Know the Biasing Voltage required for different families of IC's and connect the power supply voltage and ground terminals to the respective pins of the IC's.
7. Know the Current and Voltage rating of the IC's before using them in the experiment.
8. Avoid unnecessary talking while doing the experiment.
9. Handle the IC Trainer Kit properly.
10. Mount the IC Properly on the IC Zif Socket.
11. Handle the microprocessor kit properly.
12. While doing the Interfacing, connect proper voltages to the interfacing kit.
13. Keep the Table clean.
14. Take a signature of the In charge before taking the kit/components.
15. After the completion of the experiments switch off the power supply and return the apparatus.
16. Arrange the chairs/stools and equipment properly before leaving the lab.
17. Do not exceed the voltage Rating.
18. Do not inter change the IC's while doing the experiment.
19. Avoid loose connections and short circuits.
20. Do not throw the connecting wires to floor.
21. Do not come late to the lab.
22. Do not operate $\mu \mathrm{p} / \mathrm{IC}$ trainer kits unnecessarily.
23. Do not panic if you don't get the output.

CONTENTS

Experiment No Page. No

1. Verification of Gates 2
2. Half/Full Adder/Subtractor 6
3. Parallel Adder/Subtractor 10
4. Excess-3 to BCD \& Vice Versa 12
5. Binary-Grey \& Grey-Binary Converter 16
6. MUX/DEMUX 20
7. $M U X / D E M U X$ using only $N A N D$ Gates 26
8. Comparators 28
9. Encoder/Decoder 32
10. Flip-Flops 36
11. Counters 38
12. Shift Registers 44
13. Johnson/Ring Counters 48
14. Sequence Generator 50
15. Multivibrators 52
16. Static RAM 56
17. Question Bank 57

Inverter Gate (NOT Gate) © 7404LS

A	O/P	Y1 (V)	Y2 (V)	Y3 (V)	Y4 (V)	Y5 (V)	Y6 (v)
0	1						
1	0						

2-Input AND Gate © 7408LS

A	B	O / P	Y 1 (V)	Y 2 (V)	Y 3 (V)	Y 4 (V)
0	0	0				
0	1	0				
1	0	0				
1	1	1				

2-Input NAND Gate © 7400 LS

A	B	O / \mathbf{P}	Y1 (V)	Y2 (V)	Y3 (V)	Y4 (V)
0	0	1				
0	1	0				
1	0	0				
1	1	0				

\qquad 11

VERIFICATION OF GATES

Aim: - To study and verify the truth table of logic gates

Apparatus Required: -
All the basic gates mention in the fig.

Procedure: -

1. Place the IC on IC Trainer Kit.
2. Connect $V_{\text {CC }}$ and ground to respective pins of IC Trainer Kit.
3. Connect the inputs to the input switches provided in the IC Trainer Kit.
4. Connect the outputs to the switches of O/P LEDs,
5. Apply various combinations of inputs according to the truth table and observe condition of LEDs.
6. Disconnect output from the LEDs and note down the corresponding multimeter voltage readings for various combinations of inputs.

Digital Electronics Lab

2-
Input EX-OR Gate © 7486LS

A	B	O/P	Y1 (V)	Y2 (V)	Y3 (V)	Y4 (V)
0	0	0				
0	1	1				
1	0	1				
1	1	0				

3-
Input NAND Gate © 7410LS

A	B	C	O / \mathbf{P}	Y 1 $(\mathrm{~V})$	Y 2 $(\mathrm{~V})$	Y 3 $(\mathrm{~V})$
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	0			

2-Input NAND Gate © CD4011

A	B	O/P	Y 1 $(\mathrm{~V})$	Y 2 $(\mathrm{~V})$	Y 3 $(\mathrm{~V})$	Y 4 $(\mathrm{~V})$
0	0	1				
0	1	1				
1	0	1				
1	1	0				

2-Input NOR Gate © CD4001

4-Input NAND Gate © 7420LS

Conclusion:-

Digital Electronics Lab

Half Adder using basic gates:-

$$
\begin{aligned}
& S=\overline{A B}+A B \\
& S=A \oplus B \\
& C=A B
\end{aligned}
$$

Full Adder using basic gates:-

Half Adder using NAND gates only:-

Full Adder using NAND gates only:-

Experiment No:
Date: \qquad
\qquad

HALF/FULL ADDER \& HALF/FULL SUBTRACTOR

Aim: - To realize halfffull adder and half/full subtractor.
i. Using X-OR and basic gates
ii. Using only nand gates.

Apparatus Required: -
IC 7486, IC 7432, IC 7408, IC 7400, etc.
Procedure: -

1. Verify the gates.
2. Make the connections as per the circuit diagram.
3. Switch on V_{CC} and apply various combinations of input according to the truth table.
4. Note down the output readings for half/full adder and half/full subtractor sum/difference and the carry/borrow bit for different combinations of inputs.

Using X - OR and Basic Gates (a)Half Subtractor

Full Subtractor

(ii) Using only NAND gates (a) Half subtractor

(b) Full Subtractor

Digital Electronics Lab

Digital Electronics Lab

Conclusion: -

Pin Detail: -

Adder: -

Truth Table: -

A3	A2	A1	A0	B3	B2	B1	B0	C4 (V)	S3(V)	S2(V)	S1(V)	S0(V)
0	0	0	1	0	0	1	0	0	0	0	1	1
0	1	0	1	1	0	1	1	1	1	0	0	0
1	0	1	0	1	0	1	0	1	0	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1	0
0	1	1	1	0	0	1	1	0	1	0	1	0

Subtractor:-

Experiment No:
Date: _ / /

PARALLEL ADDER AND SUBTRACTOR USING 7483

Aim: - To realize IC7483 as parallel adder / Subtractor.

Apparatus Required: -

IC 7483, IC 7404, etc.

Procedure: -

1. Apply the inputs to A 0 to A 3 and B 0 to B 3 .
2. Connect C 0 to the Ground.
3. Check the output sum on the S 0 to S 3 and also $\mathbf{C} 4$.
4. For subtraction connect C 0 to Vcc, Apply the B input through NOT gate, which gives the complement of B.
5. The truth table of adder and Subtractor are noted down.

Truth Table for Subtractor

A3	A2	A1	A0	B3	B2	B1	B0	C4(V)	S3(V)	S2(V)	S1(V)	S0(V)
0	0	1	0	0	0	0	1	1	0	0	0	1
0	1	0	1	0	0	1	1	1	0	0	1	0
0	0	1	1	0	1	0	1	0	1	1	1	0

Digital Electronics Lab

1	0	1	0	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	1	0	1	0	0	1

Conclusion: -

Signature of the staff

BCD To Excess-3

Truth Table For Code Conversion: -

Inputs					Outputs			
B3	B2	B1	B0	E3 (v)	E2 (v)	E1 (v)	E0 (v)	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

Experiment No:

Date: \qquad 1

BCD to Excess 3 AND Excess 3 to BCD

Aim: - To verify BCD to excess -3 code conversion using NAND gates. To study and verify the truth table of excess- 3 to BCD code converter

Apparatus Required: -

IC 7400, IC 7404, etc.

Procedure: - (BCD Excess 3 and Vice Versa)

1. Make the connections as shown in the fig.
2. Pin [14] of all IC'S are connected to +5 V and pin [7] to the ground.
3. The inputs are applied at E3, E2, E1, and E0 and the corresponding outputs at B3, B2, B1, and B0 are taken for excess - 3 to BCD.
4. B3, B2, B1, and B0 are the inputs and the corresponding outputs are E3, E2, E1 and E0 for BCD to excess - 3 .
5. Repeat the same procedure for other combinations of inputs.
6. Truth table is written.

Excess-3 To BCD :-

Truth Table For Code Conversion: -

Inputs					Outputs			
E3	E2	E1	E0	B3 (v)	B2 (v)	B1 (v)	B0(v)	
0	0	1	1	0	0	0	0	
0	1	0	0	0	0	0	1	
0	1	0	1	0	0	1	0	
0	1	1	0	0	0	1	1	
0	1	1	1	0	1	0	0	
1	0	0	0	0	1	0	1	
1	0	0	1	0	1	1	0	
1	0	1	0	0	1	1	1	
1	0	1	1	1	0	0	0	
1	1	0	0	1	0	0	1	

Exercise: -

1. Obtain the expression for E3, E2, E1 and E0
2. Obtain the expression for B3, B2, B1 and B0

Conclusion: -

Digital Electronics Lab

Circuit Diagram: -

Binary To Gray

Using EX-OR gates

Gray To Binary

Using EX-OR gates

Truth Table For Both: -

Inputs				Outputs				
B3	B2	B1	B0	G3 (V)	G2 (V)	G1 (V)	G0 (V)	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	1	0	1	
1	0	1	0	1	1	1	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	0	1	0	
1	1	0	1	1	0	1	1	
1	1	1	0	1	0	0	1	
1	1	1	1	1	0	0	0	

Experiment No:
Date: \qquad

BINARY TO GRAY AND GRAY TO BINARY CONVERSION

Aim: - To convert given binary numbers to gray codes.

Apparatus Required: -
IC 7486, etc

Procedure: -

1. The circuit connections are made as shown in fig.
2. Pin (14) is connected to + Vcc and Pin (7) to ground.
3. In the case of binary to gray conversion, the inputs B0, B1, B2 and B3 are given at respective pins and outputs G0, G1, G2, G3 are taken for all the 16 combinations of the input.
4. In the case of gray to binary conversion, the inputs G0, G1, G2 and G3 are given at respective pins and outputs B0, B1, B2, and B3 are taken for all the 16 combinations of inputs.
5. The values of the outputs are tabulated.

Digital Electronics Lab

Using Nand Gates Only: -

Binary To Gray

Gray To Binary

Truth Table For Both: -

Inputs				Outputs				
B3	B2	B1	B0	G3 (V)	G2 (V)	G1 (V)	G0 (V)	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	1	0	1	
1	0	1	0	1	1	1	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	0	1	0	
1	1	0	1	1	0	1	1	
1	1	1	0	1	0	0	1	
1	1	1	1	1	0	0	0	

Conclusion: -

Digital Electronics Lab

Pin Details: -

Truth Table: -

CHANNEL-A							
INPUTS							SELECT LINES
O/P							
$\overline{\text { Ea }}$	Ioa	I1a	I2a	I3a	S1	S2	Za(v)
1	X	X	X	X	X	X	0
0	0	X	X	X	0	0	0
0	1	X	X	X	0	0	1
0	X	0	X	X	0	1	0
0	X	1	X	X	0	1	1
0	X	X	0	X	1	0	0
0	X	X	1	X	1	0	1
0	X	X	X	0	1	1	0
0	X	X	X	1	1	1	1

CHANNEL-B									
INPUTS							SELECT LINES		O / P
$\overline{\text { Eaa }}$	Iob	I1b	I2b	I3b	S1	S2	$\mathrm{Za}(\mathrm{v})$		
1	X	X	X	X	X	X	0		
0	0	X	X	X	0	0	0		
0	1	X	X	X	0	0	1		
0	X	0	X	X	0	1	0		
0	X	1	X	X	0	1	1		
0	X	X	0	X	1	0	0		
0	X	X	1	X	1	0	1		
0	X	X	X	0	1	1	0		
0	X	X	X	1	1	1	1		

Experiment No:
Date: \qquad

MUX/DEMUX USING 74153 \& 74139

Aim: - To verify the truth table of multiplexer using $74153 \&$ to verify a demultiplexer using 74139. To study the arithmetic circuits half-adder half Subtractor, full adder and full Subtractor using multiplexer.

Apparatus Required: -

IC 74153, IC 74139, IC 7404, etc.

Procedure: - (IC 74153)

1. The Pin [16] is connected to + Vcc.
2. Pin [8] is connected to ground.
3. The inputs are applied either to ' A ' input or ' B ' input.
4. If MUX ' A ' has to be initialized, Ea is made low and if MUX ' B ' has to be initialized, E_{b} is made low.
5. Based on the selection lines one of the inputs will be selected at the output and thus the truth table is verified.
6. In case of half adder using MUX, sum and carry is obtained by applying a constant inputs at $I_{0 a}, I_{1 a}, I_{2 a}, I_{3 a}$ and $I_{0 b}, I_{1 b}, I_{2 b}$ and $I_{3 b}$ and the corresponding values of select lines are changed as per table and the output is taken at Z0a as sum and Z0b as carry.
7. In this case, the channels A and B are kept at constant inputs according to the table and the inputs A and B are varied. Making Ea and Eb zero and the output is taken at Za , and Zb .
8. In full adder using MUX, the input is applied at $\mathrm{Cn}-1, \mathrm{An}$ and Bn . According to the table corresponding outputs are taken at Cn and Dn .

Digital Electronics Lab

Half Adder Using 74153 -

Full Adder Using 74153: -

Half Subtractor: -

Full Subtractor Using 74153: -

Truth Tables: - Same for both Subtractor and adder

				Full Adder/subtractro				
				An	Bn	Cn -1	Sn/Dn (V)	$\mathrm{Cn} / \mathrm{Bn}(\mathrm{V})$
Half adder/subtractor				0	0	0		
A	B	$\mathrm{Sn} / \mathrm{Dn}$ (V)	$\mathrm{Cn} / \mathrm{Bn}$ (V)	0	0	1		
0	0			0	1	0		
0	1			0	1	1		
1	0			1	0	0		
1	1			1	0	1		
				1	1	0		
				1	1	1		

Pin Details: -

Truth Table For Demux: -

CHANNEL-A											
Inputs								Outputs			
$\overline{\text { Ea }}$	S1a	S0a	Y0a	Y1a	Y2a	Y3a					
1	X	X	1	1	1	1					
0	0	0	0	1	1	1					
0	0	1	1	0	1	1					
0	1	0	1	1	0	1					
0	1	1	1	1	1	0					

CHANNEL - B							
Inputs				Outputs			
$\overline{\text { Ēb }}$	S1b	S0b	Y0b	Y1b	Y2b	Y3b	
1	X	X	1	1	1	1	
0	0	0	0	1	1	1	
0	0	1	1	0	1	1	
0	1	0	1	1	0	1	
0	1	1	1	1	1	0	

Procedure: - (IC 74139)

1. The inputs are applied to either 'a' input or 'b' input
2. The demux is activated by making Ea low and Eb low.
3. The truth table is verified.

Half adder

0 E ${ }^{\text {a }} 10$	-	16 Vcc				
B ${ }_{\text {SOa } 2}$		p15 吅			Half Add	
A Sla_{3}		14 Sb	A	B	Sn (V)	Cn (V)
YOa_{4}	74139	${ }_{13} \mathrm{Slb}$	0	0	0	0
Yla_{5}		12 YOb	0	1	1	0
Sum - ${ }^{7400}$ Y29 6		11 Ylb	1	0	1	0
Carry $\quad 7400$ Y3 7		10 Yb	1	1	0	1
GND_{8}		9 Y3b				

Half subtractor:-

Half Subtractor			
A	B	Dn (V)	Bn (V)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Exercise:-

- Repeat the experiment to verify Channel B.

Full Adder using IC 74139:-

Full subtractor using IC 74139:-

Truth Tables:-

Full Adder				
An	Bn	Cn-1	Sn (V)	Cn (V)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Full Subtractor				
An	Bn	Cn-1	Dn (V)	Bn (V)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Conclusion:-

MUX USING NAND GATES ONLY: -

DEMUX USING NAND GATES ONLY: -

Experiment No:
DATE: \qquad

MUX AND DEMUX USING NAND GATES

AIM: - To verify the truth table of MUX and DEMUX using NAND.

APPARATUS REQUIRED: -

IC 7400, IC 7410, IC 7420, etc.

PROCEDURE: -

1. Connections are made as shown in the Circuit diagram.
2. Change the values of the inputs as per the truth table and note down the outputs readings using multimeter.

TRUTH TABLES: -

					OUPUT	
A	B	I 0	I 1	I 2	I 3	$\mathrm{Y}(\mathrm{V})$
0	0	0	X	X	X	0
0	0	1	X	X	X	1
0	1	X	0	X	X	0
0	1	X	1	X	X	1
1	0	X	X	0	X	0
1	0	X	X	1	X	1
1	1	X	X	X	0	0
1	1	X	X	X	1	1

INPUT			OUPUT				
$\overline{\mathrm{E}}$	A	B	Y0 (V)	Y1 (V)	Y2 0	Y3 (V)	
1	X	X	1	1	1	1	
0	0	0	0	1	1	1	
0	0	1	1	0	1	1	
0	1	0	1	1	0	1	
0	1	1	1	1	1	0	

Conclusion:-

Digital Electronics Lab

One Bit Comparator: -

A	B	Y 1 $(\mathrm{~A}>\mathrm{B})$	Y 2 $(\mathrm{~A}=\mathrm{B})$	Y 3 $(\mathrm{~A}<\mathrm{B})$
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Two Bit Comparator: -

Two-Bit Comparator:

A 1	A 0	B 1	B 0	$\mathrm{Y} 1(\mathrm{~A}>\mathrm{B})$	$\mathrm{Y} 2(\mathrm{~A}=\mathrm{B})$	$\mathrm{Y} 3(\mathrm{~A}<\mathrm{B})$
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

JIT/ME/SEM-VI/CIM LAB

Digital Electronics Lab
JIT/ME/SEM-VI/CIM LAB

Experiment No:

Date: \qquad 1

COMPARATORS

Aim: - To verify the truth table of one bit and two bit comparators using logic gates.

Apparatus Required: -
IC 7486, IC 7404, IC 7408, etc.

Procedure: -

1. Verify the gates.
2. Make the connections as per the circuit diagram.
3. Switch on Vcc.
4. Applying i / p and Check for the outputs.
5. The voltameter readings of outputs are taken and tabulated in tabular column.
6. The o/p are verified.

Digital Electronics Lab

4-bit Comparator

Tabular Coloumn For 8-Bit Comparator: -

$\mathrm{A}_{3} \mathrm{~B}_{3}$	$\mathrm{~A}_{2} \mathrm{~B}_{2}$	$\mathrm{~A}_{1} \mathrm{~B}_{1}$	$\mathrm{~A}_{0} \mathrm{~B}_{0}$	$\mathrm{~A}>\mathrm{B}$	$\mathrm{A}=\mathrm{B}$	$\mathrm{A}<\mathrm{B}$	$\mathrm{A}>\mathrm{B}$	$\mathrm{A}=\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
$\mathrm{A}_{3}>\mathrm{B}_{3}$	X	X	X	X	X	X			
$\mathrm{A}_{3}<\mathrm{B}_{3}$	X	X	X	X	X	X			
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}>\mathrm{B}_{2}$	X	X	X	X	X			
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}<\mathrm{B}_{2}$	X	X	X	X	X			
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{1}>\mathrm{B}_{1}$	X	X	X	X			
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{1}<\mathrm{B}_{1}$	X	X	X	X			
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{1}=\mathrm{B}_{1}$	$\mathrm{~A}_{0}>\mathrm{B}_{0}$	X	X	X			
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{1}=\mathrm{B}_{1}$	$\mathrm{~A}_{0}<\mathrm{B}_{0}$	X	X	X			
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{1}=\mathrm{B}_{1}$	$\mathrm{~A}_{0}=\mathrm{B}_{0}$	1	0	0			
$\mathrm{~A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{1}=\mathrm{B}_{1}$	$\mathrm{~A}_{0}=\mathrm{B}_{0}$	0	1	0			
$\mathrm{~A}_{3}=\mathrm{B}_{3}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{1}=\mathrm{B}_{1}$	$\mathrm{~A}_{0}=\mathrm{B}_{0}$	0	0	1			

8-Bit Comparator: -

Exercise:-

- Write the truth table for 8 -bit comparator and verify the same for the above circuit.

Conclusion:-

PIN DETAILS:-

74148

TRUTH TABLE:-

| E_{n} | A | B | C | D | E | F | G | H | $\mathrm{Q}_{2}(\mathrm{~V})$ | | $\mathrm{Q}_{1}(\mathrm{~V})$ | | $\mathrm{Q}_{0}(\mathrm{~V})$ | | $\mathrm{E}_{\mathbf{s}}(\mathrm{V})$ | | $\mathrm{E}_{0}(\mathrm{~V})$ | |
| :--- |
| 1 | X | X | X | X | X | X | X | X | 1 | | 1 | | 1 | | 1 | | 1 | |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | | 1 | | 0 | | 1 | |
| 0 | X | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | | 0 | | 0 | | 1 | |
| 0 | 0 | X | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | | 1 | | 0 | | 1 | |
| 0 | 0 | 0 | X | 0 | 1 | 1 | 1 | 1 | 1 | | 0 | | 0 | | 0 | | 1 | |
| 0 | 0 | 0 | 0 | X | 0 | 1 | 1 | 1 | 0 | | 1 | | 1 | | 0 | | 1 | |
| 0 | 0 | 0 | 0 | 0 | X | 0 | 1 | 1 | 0 | | 1 | | 0 | | 0 | | 1 | |
| 0 | 0 | 0 | 0 | 0 | 0 | X | 0 | 1 | 0 | | 0 | | 1 | | 0 | | 1 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | | 1 | |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | | 1 | | 1 | | 0 | |

Experiment No:

DATE: \qquad

ENCODER \& DECODER

AIM:-To convert a given octal input to the binary output and to study the LED display using 7447 7-segment decoder/ driver.

APPARATUS REQUIRED: -

IC 74148, IC 7447, 7-segment display, etc.

PROCEDURE: - (Encoder)

1. Connections are made as per circuit diagram.
2. The octal inputs are given at the corresponding pins.
3. The outputs are verified at the corresponding output pins.

PROCEDURE: - (Decoder)

1. Connections are made as per the circuit diagram.
2. Connect the pins of IC 7447 to the respective pins of the LED display board.
3. Give different combinations of the inputs and observe the decimal numbers displayed on the board.

RESULT: -

The given octal numbers are converted into binary numbers.
The given data is displayed using $\&$-segment LED decoder.

TABULAR COLUMN:-

Q4	Q3	Q2	Q1	O/P	Display	Glowing LEDs	
0	0	0	0	0	\|-		a,b,c,d,e,f
0	0	0	1	1	I	b,c	
0	0	1	0	2	- ${ }_{\square}$	a,b,d,e,g	
0	0	1	1	3	-	a,b,c,d,g	
0	1	0	0	4	'-1	b,c,f,g	
0	1	0	1	5	- ${ }_{\square}$	a,c,d,f,g	
0	1	1	0	6	-	a.c.d.e.f.g	
0	1	1	1	7	1	a.b.c	
1	0	0	0	8	-\|	a,b,c,d,e,f,g	
1	0	0	1	9	-	a,b,c,d,f,g	
1	0	1	0	10	\square_{-}	d,e,g	
1	0	1	1	11	-	c, d,g	
1	1	0	0	12	I_\|	c,d,	
1	1	0	1	13	-	a,g,d	
1	1	1	0	14	${ }_{1}^{1}$	d,e,f,g	
1	1	1	1	15		blank	

Department of E \& C

PIN DETAILS:-

DISPLAY:-

Conclusion:-

Digital Electronics Lab

Circuit Diagram: - (Master Slave JK Flip-Flop)

D Flip-Flop:-

T Flip-Flop:-

Experiment No:
Date: \qquad 1_1

FLIP-FLOP

Aim:- Truth table verification of Flip-Flops:
(i) JK Master Slave
(ii) D^{-}Type
(iii) T-Type.

Apparatus Required: -

IC 7410, IC 7400, etc.

Procedure: -

1. Connections are made as per circuit diagram.
2. The truth table is verified for various combinations of inputs.

Truth Table:- (Master Slave JK Flip-Flop)

Preset	Clear	J	K	Clock	Qn+1	$\overline{\mathrm{Qn}+1}$	
0	1	X	X	X	1	0	Set
1	0	X	X	X	0	1	Reset
1	1	0	0	Ω	Qn	$\overline{\mathrm{Qn}}$	No Change
1	1	0	1	Ω	0	1	Reset
1	1	1	0	Ω	1	0	Set
1	1	1	1	Ω	$\overline{\mathrm{Qn}}$	Qn	Toggle

D Flip-Flop:-

Preset	Clear	D	Clock	Qn+1	$\overline{\text { Qn+1 }}$
1	1	0	Ω	0	1
1	1	1	Ω	1	0

T Flip-Flop:-

Preset	Clear	T	Clock	Qn+1	$\overline{\mathrm{Qn}+1}$
1	1	0	Ω	Qn	$\overline{\mathrm{Qn}}$
1	1	1	Ω	$\overline{\mathrm{Qn}}$	Qn

Exercise:-

- Write the timing diagrams for all the above Flip-Flops

Circuit Diagram: - 3-Bit Asynchronous Up Counter

3-bit Asynchronous			
up counter			
Clock	QC	QB	QA
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8	0	0	0

\section*{| 9 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |}

Experiment No:
Date: \qquad

COUNTERS

Aim:Realization of 3 -bit counters as a sequential circuit and Mod-N counter design (7476, 7490, 74192, 74193).

Apparatus Required: -
IC 7408, IC 7476, IC 7490, IC 74192, IC 74193, IC 7400, IC 7416, IC 7432 etc.

Procedure: -

1. Connections are made as per circuit diagram.
2. Clock pulses are applied one by one at the clock I / P and the O / P is observed at QA, QB \& QC for IC 7476.
3. Truth table is verified.

Procedure (IC 74192, IC 74193):-

1. Connections are made as per the circuit diagram except the connection from output of NAND gate to the load input.
2. The data $(0011)=3$ is made available at the data $i / p s A, B, C \& D$ respectively.
3. The load pin made low so that the data 0011 appears at QD, QC, QB \& QA respectively.
4. Now connect the output of the NAND gate to the load input.
5. Clock pulses are applied to "count up" pin and the truth table is verified.
6. Now apply (1100) = 12 for 12 to 5 counter and remaining is same as for 3 to 8 counter.
7. The pin diagram of IC 74192 is same as that of 74193.74192 can be configured to count between 0 and 9 in either direction. The starting value can be any number between 0 and 9 .

Circuit Diagram: - 3-Bit Asynchronous Down Counter

Mod 5 Asynchronous Counter:-

Digital Electronics Lab

Mod 5 Asynchronous counter			
Clock	QC	QB	QA
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	0	0	0

Mod 3 Asynchronous Counter:-

Mod 3 Asynchronous			
counter			

3-bit Synchronous Counter:-

Digital Electronics Lab

Clock	QD	QC	QB	QA	Count in Decimal
0	0	0	1	1	3
1	0	1	0	0	4
2	0	1	0	1	5
3	0	1	1	0	6
4	0	1	1	1	7
5	1	0	0	0	8
6	0	0	1	1	3
7	repeats				

Circuit Diagram (IC 74193) To Count from 8 to 3:-

Clock	QD	QC	QB	QA	Count in Decimal		
0	0	1	0	1	5		
1	0	1	1	0	6		
2	0	1	1	1	7		
3	1	0	0	0	8		
4	1	0	0	1	9		
5	1	0	1	0	10		
6	1	0	1	1	11		
7	1	1	0	0	12		
8	0	1	0	1	5		
9	repeats						6

Function Table for 7490:-

Clock	R1	R2	S1	S2	QD	QC	QB	QA	
X	H	H	L	X	L	L	L	L	RESET
X	H	H	X	L	L	L	L	L	RESET
X	X	X	H	H	H	L	L	H	$\begin{aligned} & \text { SET } \\ & \text { TO } 9 \end{aligned}$
Ω	X	L	X	L	COUNT				
Ω	L	X	L	X	COUNT				
Ω	L	X	X	L	COUNT				
Ω	X	L	L	X	COUNT				

4 I/P OR Gate can be realized as follows:-

Conclusion:-

Circuit Diagram: - Shift Left

Clock	Serial i / p	QA	QB	QC	QD
1	1	X	X	X	1
2	0	X	X	1	0
3	1	X	1	0	1
4	1	1	0	1	1

SIPO (Right Shift):-

Clock	Serial i/p	QA	QB	QC	QD
1	0	0	X	X	X
2	1	1	0	X	X
3	1	1	1	0	X
4	1	1	1	1	0

SISO:-

Clock	Serial i/p	QA	QB	QC	QD
1	$\mathrm{do}=0$	0	X	X	X
2	$\mathrm{~d} 1=1$	1	0	X	X
3	$\mathrm{~d} 2=1$	1	1	0	X
4	$\mathrm{~d} 3=1$	1	1	1	$0=\mathrm{do}$
5	X	X	1	1	$1=\mathrm{d} 1$
6	X	X	X	1	$1=\mathrm{d} 2$
7	X	X	X	X	$1=\mathrm{d} 3$

\qquad 1_1

SHIFT REGISTERS

Aim:Realization of 3 -bit counters as a sequential circuit and $\mathrm{Mod}-\mathrm{N}$ counter design (7476, 7490, 74192, 74193).

Apparatus Required: -

IC 7495, etc.
Procedure: -
Serial In Parallel Out:-

1. Connections are made as per circuit diagram.
2. Apply the data at serial i / p
3. Apply one clock pulse at clock 1 (Right Shift) observe this data at QA.
4. Apply the next data at serial i / p.
5. Apply one clock pulse at clock 2 , observe that the data on QA will shift to QB and the new data applied will appear at QA.
6. Repeat steps 2 and 3 till all the 4 bits data are entered one by one into the shift register.

Serial In Serial Out:-

1. Connections are made as per circuit diagram.
2. Load the shift register with 4 bits of data one by one serially.
3. At the end of $4^{\text {th }}$ clock pulse the first data ' d 0 ' appears at QD.
4. Apply another clock pulse; the second data 'd1' appears at QD.
5. Apply another clock pulse; the third data appears at QD.
6. Application of next clock pulse will enable the $4^{\text {th }}$ data ' d 3 ' to appear at QD. Thus the data applied serially at the input comes out serially at QD

PISO:-

Mode	Clock	Parallel i/p				Parallel o/p			
		A	B	C	D	QA	QB	QC	QD
1	1	1	0	1	1	1	0	1	1
0	2	X	X	X	X	X	1	0	1
0	3	X	X	X	X	X	X	1	0
0	4	X	X	X	X	X	X	X	1

PIPO:-

Clock	Parallel i / p			Parallel o/p				
	A	B	C	D	QA	QB	QC	QD
1	1	0	1	1	1	0	1	1

Parallel In Parallel Out:-

1. Connections are made as per circuit diagram.
2. Apply the 4 bit data at A, B, C and D.
3. Apply one clock pulse at Clock 2 (Note: Mode control $\mathrm{M}=1$).
4. The 4 bit data at A, B, C and D appears at QA, QB, QC and QD respectively.

Parallel In Serial Out:-

1. Connections are made as per circuit diagram.
2. Apply the desired 4 bit data at A, B, C and D.
3. Keeping the mode control $\mathrm{M}=1$ apply one clock pulse. The data applied at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D will appear at QA, QB, QC and QD respectively.
4. Now mode control $M=0$. Apply clock pulses one by one and observe the data coming out serially at QD.

Left Shift:-

1. Connections are made as per circuit diagram.
2. Apply the first data at D and apply one clock pulse. This data appears at QD.
3. Now the second data is made available at D and one clock pulse applied. The data appears at QD to QC and the new data appears at QD.
4. Step 3 is repeated until all the 4 bits are entered one by one.
5. At the end $4^{\text {th }}$ clock pulse the 4 bits are available at QA, QB, QC and QD.

Conclusion:-

Circuit Diagram: - Ring Counter

Mode	Clock	QA	QB	QC	QD
1	1	1	0	0	0
0	2	0	1	0	0
0	3	0	0	1	0
0	4	0	0	0	1
0	5	1	0	0	0
0	6	repeats			

Johnson Counter:-

Mode	Clock	QA	QB	QC	QD	
1	1	1	0	0	0	
0	2	1	1	0	0	
0	3	1	1	1	0	
0	4	1	1	1	1	
0	5	0	1	1	1	
0	6	0	0	1	1	
0	7	0	0	0	1	
0	8	0	0	0	0	
0	9	1	0	0	0	
0	10	repeats				

Experiment No:
Date: \qquad 11

JOHNSON COUNTERS / RING COUNTER

Aim:- Design and testing of Ring counter/ Johnson counter.

Apparatus Required: -
IC 7495, IC 7404, etc.

Procedure: -

1. Connections are made as per the circuit diagram.
2. Apply the data 1000 at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively.
3. Keeping the mode $\mathbf{M}=1$, apply one clock pulse.
4. Now the mode M is made 0 and clock pulses are applied one by one and the truth table is verified.
5. Above procedure is repeated for Johnson counter also.

Circuit Diagram: - Sequence Generator

Truth Table:-

Map Value	Clock	QA	QB	QC	QD	o/p D
15	1	1	1	1	1	0
7	2	0	1	1	1	0
3	3	0	0	1	1	0
1	4	0	0	0	1	1
8	5	1	0	0	0	0
4	6	0	1	0	0	0
2	7	0	0	1	0	1
9	8	1	0	0	1	1
12	9	1	1	0	0	0
6	10	0	1	1	0	1
11	11	1	0	1	1	0
5	12	0	1	0	1	1
10	13	1	0	1	0	1
13	14	1	1	0	1	1
14	15	1	1	1	0	1

Karnaugh Map for D:-

\[

\]

Experiment No:

Date: \qquad

SEQUENCE GENERATOR

Aim:- Design of Sequence Generator.

Apparatus Required: -
IC 7495, IC 7486, etc.

Design:-

To generate a sequence of length S it is necessary to use at least N number of Flip-Flops, which satisfies the condition $\mathrm{S} \leq 2^{\mathrm{N}}-1$.

The given sequence length $S=15$.

$$
\text { Therefore } \mathrm{N}=4 \text {. }
$$

Note: - There is no guarantee that the given sequence can be generated by $4 \mathrm{f} / \mathrm{fs}$. If the sequence is not realizable by $4 \mathrm{f} / \mathrm{fs}$ then $5 \mathrm{f} / \mathrm{fs}$ must be used and so on.

Procedure: -

1. Connections are made as per the circuit diagram.
2. Clock pulses are applied one by one and truth table is verified.

Conclusion:-

Circuit Diagram: - Monostable Multivibrator

Waveform:-

Experiment No:
Date: \qquad

MULTIVIBRATORS

Aim:- Design and testing of Monostable and Astable multivibrators using 555 timer.

Apparatus Required: -
IC 555 timer, resistor, capacitor, etc.
Design:- (Monostable)
Given pulse width required $=1 \mathrm{~ms}$
Pulse width $T=1.1 R C$
Therefore $1 \mathrm{~ms}=1.1 \mathrm{RC}$
Let $C=0.1 \mu f$
Therefore $\mathrm{R}=\frac{1 \times 10^{-3}}{1.1 \times 0.1 \times 10^{-6}}$

Procedure: -(Monostable)

1. Connections are made as per the circuit diagram.
2. Triggering pulses are applied at pin 2.
3. The pulse width of the waveform at pin3 is measured and verified with the designed value.

Digital Electronics Lab

Astable Multivibrator:-

Wave form:-

Design:-

$$
\begin{aligned}
& \text { Ton }=0.69\left(R_{A}+R_{B}\right) \mathrm{C}, \quad \text { Toff }=0.69 \mathrm{R}_{\mathrm{B}} \mathrm{C} \\
& \text { Given; } \mathrm{f}=10 \mathrm{KHz} \text {, duty cycle }=70 \% \text {, } \\
& \text { Therefore } \mathrm{T}=(1 / \mathrm{f})=\left(1 / 10 \times 10^{3}\right)=0.1 \mathrm{~ms} \\
& \qquad \mathrm{D}=(\mathrm{Ton} / \mathrm{T})=0.7 \\
& \text { Ton }=0.7 \mathrm{~T}=0.7 \times 0.1 \mathrm{~ms}=0.07 \mathrm{~ms} \\
& \mathrm{~T}=\text { Ton }+ \text { Toff } \\
& \text { Therefore Toff }=0.03 \mathrm{~ms} \\
& \text { Ton }=0.69\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right) \mathrm{C} \\
& \text { Let } \mathrm{C}=0.1 \mathrm{ff} \\
& \text { Therefore } 0.07 \times 10^{-3}=0.69\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right) 0.1 \times 10^{-6} \\
& \text { Therefore } \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=1014 \text { ohms } \\
& \text { Toff }=0.69 \mathrm{R}_{\mathrm{B}} \mathrm{C} \\
& 0.03 \times 10^{-3}=0.69\left(\mathrm{R}_{\mathrm{B}}\right) 0.1 \times 10^{-6} \\
& \text { Therefore } \mathrm{R}_{\mathrm{B}}=434.7 \mathrm{ohms} \\
& \text { Therefore } \mathrm{R}_{\mathrm{A}}=579 \mathrm{ohms}
\end{aligned}
$$

Procedure: -

1. Connections are made as per circuit diagram
2. Switch on the 5 V power supply
3. Observe the waveforms at pin 3 on CRO, measure Ton, Toff, T and its amplitude.
4. Also observe capacitor voltage on CRO.

Conclusion:-

Example for Data Input:-

Address Inputs			
A3	A2	A1	A0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1

Data Inputs			
I/O4	I/O3	I/O2	I/O1
0	0	1	0
0	1	0	0
0	1	0	1
0	1	1	0

Example for Data Output:-

Address Inputs			
A3	A2	A1	A0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1

Data Outputs			
$\mathrm{I} / \mathrm{O} 4$	$\mathrm{I} / \mathrm{O} 3$	$\mathrm{I} / \mathrm{O} 2$	$\mathrm{I} / \mathrm{O} 1$
0	0	1	0
0	1	0	0
0	1	0	1
0	1	1	0

\qquad 1

STATIC RAM

Aim: - To conduct an experiment to store a set of data in a RAM using IC 2114 starting from location ------ to location ------ and retrieve the same data.

Apparatus Required: -
IC 2114, etc.

Procedure: -

1. circuits connections are made to the appropriate pins of IC 2114
2. First you have to write the data and then read the data, for writing data make $\overline{\mathrm{WE}}$ to low and $\overline{\mathrm{CS}}$ input to low
3. for a 4-bit data select any address input from A0 to A9. for ex, select A3 to A0 and connect the data inputs/ outputs i.e., I/O4 - I/O1
4. write a 4-bit data of your choice in each of the required address inputs or memory locations
5. by doing the above steps 2,3 and 4 the data will be stored in the memory location
6. for reading data
a. make $\overline{\mathrm{WE}}$ to high and C \bar{S} input to low
b. disconnect the data inputs I/O4 - I/O1 from input lines and connect them to output lines to read the data
c. and then give the address inputs of the data you have stored and observe the outputs through I/O4 - I/O1.
Conclusion:-

Signature of the staff in charge

