

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING LAB MANUAL

VLSI LAB

 Semester - VII

 Subject - VLSI LAB

LIST OF EXPERIMENTS & SCHEDULE

Exp. No. Title Week No.

S. No Experiments Page. No

1 Design of Logic gates 1

2 Design of Binary Adders 2

3
Design of Multiplexers and

De-multiplexers
3

4 Design of Encoders and Decoders 4

5 Flip Flops 5

6 Counters 6

7 Bitwise Operators Using 8051 7

8
Toggle a Port bit in 8051

8

9 Delay Operators in 8051 9

Introduction to Combinational Circuit Design

EXP:1 Design of Logic gates

 Introduction

The purpose of this experiment is to simulate the behavior of several of the basic logic gates and you will

connect several logic gates together to create simple digital model.

 Software tools Requirement

Equipments:

Computer with Modelsim Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm

STEP 1: Open ModelSim XE II / Starter 5.7C

STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

 Logic Gates and their Properties

Gate Description

OR

The output is active
high if any one of the
input is in active high
state, Mathematically,

Q = A+B

 The output is active

AND high only if both the
inputs are in active
high state,
Mathematically,

 Q = A.B

NOT

In this gate the output
is opposite to the input
state, Mathematically,

Q = A

NOR

The output is active
high only if both the
inputs are in active low
state, Mathematically,

Q = (A+B)’

Properties

Truth Table Logic Symbol

A

0

0

1

1

B

0

1

0

1

Output
Q

0

1

1

 1

A B Output

 0

0

1

0

1

0

Q

0

0

1 1 0

 1

A

0

1

Output
Q

1

0

A

0

0

1

1

B

0

1

0

1

Output
Q

1

0

0

 0

Pin Diagram

NAND

The output is active
high only if any one of
the input is in active
low state,
Mathematically,

Q = (A.B)’

XOR

The output is active
high only if any one of
the input is in active
high state,
Mathematically,

Q = A.B’ + B.A’

 Pre lab Questions

1. What is truth table?

2. Which gates are called universal

3. What is the difference b/w HDL and software

4. Define identifiers.

5. A basic 2-input logic circuit has a HIGH on one input and a LOW on the other input, and the output is

HIGH. What type of logic circuit is

6. A logic circuit requires HIGH on all its inputs to make the output HIGH. What type of logic circuit

it?

7. Develop the truth table for a 3-input AND gate and also determine the total number of possible

combinations for a 4-input AND gate.

A

0

0

1

1

B

0

1

0

1

Output
Q

1

1

1

0

A

0

0

1

1

B

0

1

0

1

Output
Q

0

1

1

0

Which gates are called universal gates?

What is the difference b/w HDL and software language?

input logic circuit has a HIGH on one input and a LOW on the other input, and the output is

HIGH. What type of logic circuit is it?

A logic circuit requires HIGH on all its inputs to make the output HIGH. What type of logic circuit

input AND gate and also determine the total number of possible

gate.

7486

input logic circuit has a HIGH on one input and a LOW on the other input, and the output is

A logic circuit requires HIGH on all its inputs to make the output HIGH. What type of logic circuit is

input AND gate and also determine the total number of possible

VERILOG Program

a) AND Gate

Structural Model Data Flow Model BehaviouralModel
moduleandstr(x,y,z);
inputx,y;
output z;
and g1(z,x,y);
endmodule

moduleanddf(x,y,z);
inputx,y;
output z;
assign z=(x&y);
endmodule

module andbeh(x,y,z);
input x,y;
output z;
reg z;
always @(x,y)
z=x&y;
endmodule

b) NAND Gate

Structural Model Data Flow Model BehaviouralModel
modulenandstr(x,y,z);
inputx,y;
output z;
nand g1(z,x,y);
endmodule

modulenanddf(x,y,z);
inputx,y;
output z;
assign z= !(x&y);
endmodule

module nandbeh(x,y,z);
input x,y;
output z;
reg z;
always @(x,y)
z=!(x&y);
endmodule

c) OR Gate

Structural Model Data Flow Model BehaviouralModel
module orstr(x,y,z);
inputx,y;
output z;
or g1(z,x,y);
endmodule

module ordf(x,y,z);
inputx,y;
output z;
assign z=(x|y);
endmodule

module orbeh(x,y,z);
input x,y;
output z;
reg z;
always @(x,y)
z=x|y;
endmodule

d) NOR Gate

Structural Model Data Flow Model BehaviouralModel
modulenorstr(x,y,z);
inputx,y;
output z;
nor g1(z,x,y);
endmodule

modulenordf(x,y,z);
inputx,y;
output z;
assign z= !(x|y);
endmodule

Modulenorbeh(x,y,z);
input x,y;
output z;
reg z;
always @(x,y)
z=!(x|y);
endmodule

e) XOR Gate

Structural Model Data Flow Model BehaviouralModel
module xorstr(x,y,z);
inputx,y;
output z;
xor g1(z,x,y);
endmodule

module xordf(x,y,z);
inputx,y;
output z;
assign z=(x^y);
endmodule

module xorbeh(x,y,z);
input x,y;
output z;
reg z;
always @(x,y)
z=x^y;
endmodule

f) XNOR Gate

Structural Model Data Flow Model BehaviouralModel
modulexnorstr(x,y,z);
inputx,y;
output z;
xnor g1(z,x,y);
endmodule

modulexnordf(x,y,z);
inputx,y;
output z;
assign z= !(x^y);
endmodule

module xnorbeh(x,y,z);
input x,y;
output z;
reg z;
always @(x,y)
z=!(x^y);
endmodule

g) NOT Gate

Structural Model Data Flow Model BehaviouralModel
module notstr(x,z);
input x;
output z;
not g1(z,x);
endmodule

module notdf(x,z);
input x;
output z;
assign z= !x;
endmodule

module notbeh(x,z);
input x;
output z;
reg z;
always @(x)
z=!x;
endmodule

 Post lab Questions

1. What is meant by ports?

2. Write the different types of port modes.

3. What are different types of operators?

4. What is difference b/w <= and := operators?

5. What is meant by simulation?

6. How to give the inputs in modelsim software.

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements” document available on the class web page. Be sure to include the following items

in your lab report:

Lab cover sheet with staff verification sign.

Answer the pre-lab questions

Complete VERILOG code design for all logic gates and output signal waveforms

Answer the post-lab questions

1.6 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the logic gates to your staff in-

charge:

The lab report will be graded as follows (for the 30 points):

VERILOG code for each logic gates 15 points

Output signal waveform for all logic gates and its truth table 15 points

EXP:2 Design of Binary Adders

 Introduction

The purpose of this experiment is to introduce the design of simple combinational circuits, in this case

half adders, half subtractors, full adders and full subtractors.

Software tools Requirement

Equipments:

Computer with Modelsim Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm

STEP 1: Open ModelSim XE II / Starter 5.7C

STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

 Logic Diagram

Figure 2.2.1Half adder

Figure 2.2.2 Full adder

Figure 2.2.3Halfsubtractor

Figure 2.2.4 Full subtractor

 Pre lab Questions

1. What is meant by combinational circuits?

2. Write the sum and carry expression for half and full adder.

3. Write the difference and borrow expression for half and full subtractor.

4. What is signal? How it is declared?

VERILOG Program

HALF ADDER:

Structural model Dataflow model Behaviouralmodel
modulehalfaddstr(sum,carry,a,
b);
outputsum,carry;
inputa,b;
xor(sum,a,b);
and(carry,a,b);
endmodule

modulehalfadddf(sum,carry,a,
b);
outputsum,carry;
inputa,b;
assign sum = a ^ b;
assign carry=a&b;
endmodule

modulehalfaddbeh(sum,carry,a,b
);
outputsum,carry;
inputa,b;
regsum,carry;
always @(a,b);
sum = a ^ b;
carry=a&b;
endmodule

FULL ADDER:

Structural model Dataflow model Behaviouralmodel
module
fulladdstr(sum,carry,a,b,c);
outputsum,carry;
inputa,b,c;
xor g1(sum,a,b,c);
and g2(x,a,b);
and g3(y,b,c);
and g4(z,c,a);
or g5(carry,x,z,y);
endmodule

modulefulladddf(sum,carry,a,b,c);
outputsum,carry;
inputa,b,c;
assign sum = a ^ b^c;
assign carry=(a&b) | (b&c) |
(c&a);
endmodule

modulefulladdbeh(sum,carry,a,b,c);
outputsum,carry;
inputa,b,c;
regsum,carry;
always @ (a,b,c)
sum = a ^ b^c;
carry=(a&b) | (b&c) | (c&a);
endmodule

HALF SUBTRACTOR:

Structural model Dataflow Model BehaviouralModel
modulehalfsubtstr(diff,borrow,a,
b);
outputdiff,borrow;
inputa,b;
xor(diff,a,b);
and(borrow,~a,b);
endmodule

modulehalfsubtdf(diff,borrow,a,
b);
outputdiff,borrow;
inputa,b;
assign diff = a ^ b;
assign borrow=(~a&b);
endmodule

modulehalfsubtbeh(diff,borrow,a,
b);
outputdiff,borrow;
inputa,b;
regdiff,borrow;
always @(a,b)
diff = a ^ b;
borrow=(~a&b);
endmodule

FULL SUBTRACTOR:

Structural model Dataflow Model BehaviouralModel
module
fullsubtstr(diff,borrow,a,b,c)
;
outputdiff,borrow;
inputa,b,c;
wire a0,q,r,s,t;
not(a0,a);
xor(x,a,b);
xor(diff,x,c);
and(y,a0,b);
and(z,~x,c);
or(borrow,y,z);
endmodule

modulefullsubtdf(diff,borrow,a,b,c)
;
outputdiff,borrow;
inputa,b,c;
assign diff = a^b^c;
assign borrow=(~a&b)|(~(a^b)&c);
endmodule

modulefullsubtbeh(diff,borrow,a,b,c)
;
outputdiff,borrow;
inputa,b,c;
outputdiff,borrow;
always@(a,b,)
diff = a^b^c;
borrow=(~a&b)|(~(a^b)&c);
endmodule

 Post lab Questions

1. What are the signal assignment statements?

2. What are the concurrent statements?

3. Write short notes on : a) Process statement b) Block statement

4. Write about sequential statements.

5. What is the difference b/w high impedance state of the signal(Z) and unknown state of the signal(X).

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements” document available on the class web page. Be sure to include the following items

in your lab report:

Lab cover sheet with staff verification sign.

Answer the pre-lab questions

Complete VERILOG code design for all logic gates and output signal waveforms

Answer the post-lab questions

 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the logic gates to your staff in-

charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 points

EXP:3 Design of Multiplexers and Demultiplexers

 Introduction

The purpose of this experiment is to write and simulate a VERILOG program for Multiplexers and

Demultiplexers.

Software tools Requirement:

Equipments:

Computer with Modelsim Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm

STEP 1: Open ModelSim XE II / Starter 5.7C

STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

 Logic Diagram

Function Table

Figure 3.2.1 4:1 Multiplexer Block diagram

Figure 3.2.21:4 Demux Symbol Function Table

Logic Diagram

Figure 3.2.3 2:1 Multiplexer

Figure 3.2.4 4:1 Multiplexer

VERILOG Program

Multiplexers 2:1 MUX

Structural Model Dataflow Model BehaviouralModel

module mux21str(i0,i1,s,y);

input i0,i1,s;

output y;

wire net1,net2,net3;

not g1(net1,s);

and g2(net2,i1,s);

and g3(net3,i0,net1);

or g4(y,net3,net2);

endmodule

module mux21df(i0,i1,s,y);

input i0,i1,s;

output y;

assign y =(i0&(~s))|(i1&s);

endmodule

module mux21beh(i0,i1,s,y);

input i0,i1,s;

output y;

reg y;

always@(i0,i1)

begin

if(s==0) y=i1;

if(s==1)y=i0;

end

endmodule

4:1 MUX

Structural Model Dataflow Model BehaviouralModel
module
mux41str(i0,i1,i2,i3,s0,s1,y);
input i0,i1,i2,i3,s0,s1;
 wire a,b,c,d;
output y;
 and g1(a,i0,s0,s1);
 and g2(b,i1,(~s0),s1);
and g3(c,i2,s0,(~s1));
and g4(d,i3,(~s0),(~s1));
or(y,a,b,c,d);
endmodule

module
mux41df(i0,i1,i2,i3,s0,s1,y);
input i0,i1,i2,i3,s0,s1;
output y;
assign
y=((i0&(~(s0))&(~(s1)))|
(i1&(~(s0))&s1)|
|(i2&s0&(~(s1)))|
(i3&s0&s1);
endmodule

module mux41beh(in,s,y);
output y ;
input [3:0] in ;
input [1:0] s ;
reg y;
always @ (in,s)
begin
if (s[0]==0&s[1]==0)
y = in[3];
else if (s[0]==0&s[1]==1)
y = in[2];
else if (s[0]l==1&s[1]==0)
y = in[1];
else
y = in[0];
end
endmodule

Logic Diagram

Figure 3.2.5 8:1 Multiplexer

VERILOG Program

8:1 MUX

Structural Model Dataflow Model BehaviouralModel
modulemux81str(i0,i1,i2,i3,i4,i5,i6,i7,s0,
s1,s2,y);
 input i0,i1,i2,i3,i4,i5,i6,i7,s0,s1,s2;
wire a,b,c,d,e,f,g,h;
output y;
and g1(a,i7,s0,s1,s2);
and g2(b,i6,(~s0),s1,s2);
and g3(c,i5,s0,(~s1),s2);
and g4(d,i4,(~s0),(~s1),s2);
and g5(e,i3,s0,s1,(~s2));
 and g6(f,i2,(~s0),s1,(~s2));
and g7(g,i1,s0,(~s1),(s2));
and g8(h,i0,(~s0),(~s1),(~s2));
or(y,a,b,c,d,e,f,g,h);
endmodule

modulemux81df(y,i,s);
output y;
input [7:0] i;
input [2:0] s;
wire se1;
assign
se1=(s[2]*4)|(s[1]*2)|(
s[0]);
assign y=i[se1];
endmodule

modulemux81beh(s,i0,i1,i2,i3,i4,i5,i
6,i7,y);
input [2:0] s;
input i0,i1,i2,i3,i4,i5,i6,i7;
regy;
always@(i0,i1,i2,i3,i4,i5,i6,i7,s) beg
in
case(s) begin
3'd0:MUX_OUT=i0;
3'd1:MUX_OUT=i1;
3'd2:MUX_OUT=i2;
3'd3:MUX_OUT=i3;
3'd4:MUX_OUT=i4;
3'd5:MUX_OUT=i5;
3'd6:MUX_OUT=i6;
3'd7:MUX_OUT=i7;
endcase
end
endmodule

Logic Diagram

Figure 3.2.6 1:4 Demultiplexer

Figure 3.2.7 1:8 Demultiplexer

VERILOG Program

1:4 DEMUX

Structural Model Dataflow Model BehaviouralModel
module
demux14str(in,d0,d1,d2,d3,s0,s1);
output d0,d1,d2,d3;
input in,s0,s1;
and g1(d0,in,s0,s1);
and g2(d1,in,(~s0),s1);
and g3(d2,in,s0,(~s1));
and g4(d3,in,(~s0),(~s1));
endmodule

module demux14df(
in,d0,d1,d2,d3,s0,s1);
output d0,d1,d2,3;
input in,s0,s1;
assign s0 = in & (~s0) &
(~s1);
assign d1= in & (~s0) & s1;
assign d2= in & s0 & (~s1);
assign d3= in & s0 & s1;
endmodule

module demux14beh(
din,sel,dout);
output [3:0] dout ;
reg [3:0] dout ;
input din ;
wire din ;
input [1:0] sel ;
wire [1:0] sel ;
always @ (din or sel) begin
case (sel)
0 : dout = {din,3'b000};
1 : dout = {1'b0,din,2'b00};
2 : dout = {2'b00,din,1'b0};
default : dout =
{3'b000,din};
endcase
end
endmodule

1:8 DEMUX

Structural Model Dataflow Model BehaviouralModel
module
demux18str(in,s0,s1,s2,d0,d1
,d2,d3,d4,d5,d6,d7);
input in,s0,s1,s2;
output
d0,d1,d2,d3,d4,d5,d6,d7;
and g1(d0,in,s0,s1,s2);
and g2(d1,in,(~s0),s1,s2);
and g3(d2,in,s0,(~s1),s2);
and g4(d3,in,(~s0),(~s1),s2);
and g5(d4,in,s0,s1,(~s2));
and g6(d5,in,(~s0),s1,(~s2));
and g7(d6,in,s0,(~s1),(~s2));
and
g8(d7,in,(~s0),(~s1),(~s2));
endmodule

module
demux18df(in,s0,s1,s2,i0,d1,d2,d3,d
4,d5,d6,d7);
input in,s0,s1,s2;
output d0,d1,d2,d3,d4,d5,d6,d7;
assign d0 = in & s0 & s1 & s2;
assign d1 = in & (~s0) & s1 & s2;
assign d2 = in & s0 & (~s1) & s2;
assign d3 = in & (~s0) &(~s1) & s2;
assign d4 = in & s0 & s1 & (~s2);
assign d5 = in & (~s0) & s1 & (~s2);
assign d6 = in & s0 & (~s1) & (~s2);
assign d7 = in & (~s0) & (~s1) &
(~s2);
endmodule

module
demux18beh(i, sel,
y);

input i;
input [2:0] sel;

output [7 :0] y ;
reg [7:0] y;
always@(i,sel)

begin
y=8'd0;
case(sel)
3'd0:y[0]=i;
3'd1:y[1]=i;
3'd2:y[2]=i;
3'd3:y[3]=i;
3'd4:y[4]=i;
3'd5:y[5]=i;
3'd6:y[6]=i;

default:y[7]=i;
endcase
end
endmodule

 Post Lab questions

1. Implement the function f(A,B,C)=Σm(0,1,3,5,7) by using Mux.

2. Write the VERILOG code for the above design

3. Write the VERILOG code for full subtractor usingDemux.

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following items

in your lab report:

Lab cover sheet with staff verification sign.

Answer the pre-lab questions

Complete VERILOG code design for all logic gates and output signal waveforms

Answer the post-lab questions

 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the logic gates to your staff in-

charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 points

EXP:4 Design of Encoders and Decoders

 Introduction

The purpose of this experiment is to introduce you to the basics of Encoders and Decoders. In this lab,

you have to implement Priority Encoder and the Boolean function using Decoders.

Software tools Requirement

Equipments:

Computer with Modelsim Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm

STEP 1: Open ModelSim XE II / Starter 5.7C

STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

 Logic Diagram

Figure 4.1.1 4-to-2 bit Encoder

Figure 4.2.2 2-to-4 Binary Decoders

 Prelab Questions

1. What is difference b/w encoder and data

2. What is the difference b/w decoder and data

3. Give the applications of encoder and

4. Write short notes on “ with – select”

Figure 4.2.4 8:3 Encoder

Encoder

4 Binary Decoders

What is difference b/w encoder and data selector.

What is the difference b/w decoder and data distributor.

Give the applications of encoder and decoder.

select” statement.

Logic DiagramLogic Diagram

VERILOG Program

8:3 Encoder

Structural Model Data Flow Model BehaviouralModel
Module
enc83str(d0,d1,d2,d3,d4,d5,d6,d7,q0,q
1,q2);
Input d0,d1,d2,d3,d4,d5,d6,d7;
Output q0,q1,q2;
Or g1(q0,d1,d3,d5,d7);
Or g2(q1,d2,d3,d6,d7);
Or g3(q2,d4,d5,d6,d7);
Endmodule

Module
enc83df(d0,d1,d2,d3,d4,d5,d6,d7,q0,q
1,q2);
Input d0,d1,d2,d3,d4,d5,d6,d7;
Output q0,q1,q2;
Assign q0=d1|d3|d5|d7;
Assign q1=d2|d3|d6|d7;
Assign q2=d4|d5|d6|d7;
Endmodule

module enc83beh
(din,a,b,c);
input [0:7]din;
outputa,b,c;
rega,b,c;
always@(din)
case(din)
8'b10000000:begin
a=1'b0;b=1'b0,c=1'b0;e
nd

8'b01000000:be
gin
a=1'b0;b=1'b0;c=1'b1;e
nd

8'b00100000:be
gin
a=1'b0;b=1'b1;c=1'b0;e
nd

8'b00010000:be
gin
a=1'b0;b=1'b1;c=1'b1;e
nd

8'b10001000:be
gin
a=1'b1;b=1'b0,c=1'b0;e
nd

8'b10000100:be
gin
a=1'b1;b=1'b0,c=1'b1;e
nd

8'b10000010:be
gin
a=1'b1;b=1'b1,c=1'b0;e
nd

8'b10000001:be
gin
a=1'b1;b=1'b1,c=1'b1;e
nd
endcase
endmodule

Logic Diagram

Figure 4.2.5 3:8 Decoder

VERILOG Program

3:8 Decoder

Structural Model Data Flow Model BehaviouralModel
module
decoder38str(z0,z1,z2,z3,z4,z5,z6,z7,a0,a1,a2
);
output z0,z1,z2,z3,z4,z5,z6,z7;
input a0,a1,a2;
not (s0,a0);
not (s1,a1);
not (s2,a2);
and (z0,s0,s1,s2);
and (z1,a0,s1,s2);
and (z2,s0,a1,s2);

module
decoder38df(z,a0,a1,a2)
;
output [7:0] z;
input a0,a1,a2;
assign z[0] = ~a0 & ~a1
& ~a2;
assign z[1] = ~a0&
~a1& a2;
assign z[2] = ~a0& a1&
~a2;

module decoder38beh(sel,out1
);

input [2:0] sel;
outputreg [7:0] out1;

always @(sel,out1)
case (sel)

3’b000 : out1 =
8’b00000001;

and z3,a0,a1,s2);
and (z4,s0,s1,a2);
and (z5,a0,s1,a2);
and (z6,s0,a1,a2);
and (z7,a0,a1,a2);
endmodule

assign z[3] = ~a0& a1&
a2;
assign z[4] = a0&
~a1& ~a2;
assign z[5] = a0&
~a1& a2;
assign z[6] = a0& a1&
~a2;
assign z[7] = a0& a1&
a2;
endmodule

3’b001 : out1 =
8’b00000010;

3’b010 : out1 =
8’b00000100;

3’b011 : out1 =
8’b00001000;

3’b100 : out1 =
8’b00010000;

3’b101 : out1 =
8’b00100000;

3’b110 : out1 =
8’b01000000;
default : out1 = 8’b10000000;
endcase

endmodule

 Post Lab questions

1. Implement full adder by using suitable decoder.

2. Write the VERILOG code for the above design

3. Write the VERILOG code for 3 bit Gray to binary code converter.

4. Write short notes on “test bench” with examples.

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements"document available on the class web page. Be sure to include the following items in

your lab report:

Lab cover sheet with staff verification sign.

Answer the pre-lab questions

Complete VERILOG code design for all logic gates and output signal waveforms

Answer the post-lab questions

 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the logic gates to your staff in-

charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 point

EXP 5: Flip Flops

 Introduction

The purpose of this experiment is to introduce you to the basics of flip-flops. In this lab, you will test the

behavior of several flip-flops and you will connect several logic gates together to create simple sequential

circuits.

 Software tools Requirement

Equipments:

Computer with Modelsim Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm

STEP 1: Open ModelSim XE II / Starter 5.7C

STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

5.2 Flip-Flops Logic diagram and their properties

Flip-flops are synchronous bitable devices. The term synchronous means the output changes state only

when the clock input is triggered. That is, changes in the output occur in synchronization with the clock.

A flip-flop circuit has two outputs, one for the normal value and one for the complement value of the

stored bit. Since memory elements in sequential circuits are usually flip-flops, it is worth summarizing the

behavior of various flip-flop types before proceeding further.

All flip-flops can be divided into four basic types: SR, JK, D and T. They differ in the number of inputs

and in the response invoked by different value of input signals. The four types of flip-flops are defined in

the Table 5.1. Each of these flip-flops can be uniquely described by its graphical symbol, its characteristic

table, its characteristic equation or excitation table. All flip-flops have output signals Q and Q'.

Flip-

Flop

Name

Flip-Flop Symbol

Characteristic Table

Characteristic Equation

Excitation Table

SR

 S R Q(next)

Q(next) = S + R’Q

SR = 0

Q Q(next) S R

0 0 Q 0 0 0 X

0 1 0 0 1 1 0

1 0 1 1 0 0 1

1 1 ? 1 1 X 0

JK

J K Q(next)

Q(next) = JQ’ + K’Q

Q Q(next) J K

0 0 Q 0 0 0 X

0 1 0 0 1 1 X

1 0 1 1 0 X 1

1 1 Q’ 1 1 X 0

D

Q(next) = D

 Q Q(next) D

0 0 0

0 1 1

1 0 0

1 1 1

D Q(next)

0 0

1 1

T

Q(next) = TQ’ + T’Q

 Q Q(next) T

0 0 0

0 1 1

1 0 1

1 1 0

Table 5.2 Flip-flops and their properties

5.2 Logic Diagram

Figure 5.2.1 D- Flip Flop

Figure 5.2 .2 JK Flip Flop

Figure 5.2.3 T Flip Flop

T Q(next)

0 Q

1 Q’

Figure 5.2.4 T Flip Flop

5. 3 Pre-lab Questions

1. Describe the main difference between a gated S

2. How does a JK flip-flop differ from an SR flip

3. Describe the basic difference between pulse

4. What is use of characteristic and excitation

5. What are synchronous and asynchronous

6. How many flip flops due you require storing the data

S-R Flip Flop

Dataflow Modelling

modulesr_df (s, r, q, q_n);

input s, r;

output q, q_n;

assignq_n = ~(s | q);

assign q = ~(r | q_n);

endmodule

Describe the main difference between a gated S-R latch and an edge-triggered S

flop differ from an SR flip-flop in its basic operation?

Describe the basic difference between pulse-triggered and edge-triggered flip

What is use of characteristic and excitation table?

What are synchronous and asynchronous circuits?

How many flip flops due you require storing the data 1101?

Structural Modelling

Behavioral Modelling

module sr_st(s,r,q,q_n); module sr_beh(s,r,q,q_n);

input s, r; input s, r;

output q, q_n; output q, q_n;

or g1(q_n,~s,~q); regq, q_n;

or g2(q,~r,~q_n); always@(s,r)

endmodule begin

q,n = ~(s|q);

assign q = ~(r | q_n);

endmodule

triggered S-R flip-flop.

flip -flops.

Behavioral Modelling

module sr_beh(s,r,q,q_n);

output q, q_n;

always@(s,r)

q,n = ~(s|q);

assign q = ~(r | q_n);

T Flip Flop

Behavioral Modelling

Structural Modelling

Dataflow Modelling

module t_beh(q,q1,t,c);

module t_st(q,q1,t,c);

module t_df(q,q,1,t,c);

output q,q1; output q,q1; output q,q1;

inputt,c; input t,c; input t,c;

reg q,q1; wire w1,w2; and g1(w1,t,c,q);

initial assign w1=t&c&q; and g2(w2,t,c,q1);

begin assign w2=t&c&q1; nor g3(q,w1,q1);

q=1'b1; assign q=~(w1|q1); nor g4(q1,w2,q);

q1=1'b0;

end

always @ (c)

begin

assign q1=~(w2|q);

endmodule

endmodule

end

if(c)

begin

if (t==1'b0) begin q=q; q1=q1; end

else begin q=~q; q1=~q1; end

end

endmodule

D Flip Flop

Behavioral Modelling Dataflow Modelling Structural Modelling
Module dff_async_reset(data, clk,
reset ,q);
input data, clk, reset ;
output q;
reg q;
always @ (posedgeclk or negedge
reset)
if (~reset) begin

q <= 1'b0;
end
else begin

q <= data;
end
endmodule

module dff_df(d,c,q,q1);
input d,c;
output q,q1;
assign w1=d&c;
assign w2=~d&c;
q=~(w1|q1);
q1=~(w2|q);
endmodule

module dff_df(d,c,q,q1);
input d,c;
output q,q1;
and g1(w1,d,c);
and g2(w2,~d,c);
nor g3(q,w1,q1);
nor g4(q1,w2,q);
endmodule

JK Flip Flop

Behavioral Modelling Dataflow Modelling Structural Modelling

module jk(q,q1,j,k,c);
output q,q1;
input j,k,c;
reg q,q1;
initial begin q=1'b0; q1=1'b1; end
always @ (posedge c)
begin

case({j,k})
{1'b0,1'b0}:begin

q=q; q1=q1; end
{1'b0,1'b1}: begin

q=1'b0; q1=1'b1; end
{1'b1,1'b0}:begin

q=1'b1; q1=1'b0; end
{1'b1,1'b1}: begin

q=~q; q1=~q1; end
endcase

end
endmodule

module jkflip_df (j,k,q,qn);
input j,k,q;
output qn;
wire w1,w2;
assign w1=~q;
assign w2=~k;
assign qn=(j & w1 | w2 & q);
endmodule

module jkflip_st(j,k,q,qn);
input j,k,q;
output qn;
and g1(w1,j,~q);
and g2(w2,~k,q);
or g3(qn,w1,w2);
endmodule

 Post lab

1. Discuss the application of flip-flops in data storage.

2. Draw the logic diagram of Master Slave JK flip-flop.

3. A flip-flop is presently in the RESET state and must go to the SET state on the next clock pulse. What

must J and K be?

4. What do you know about clk and clk event in VERILOG?

5. Convert the following.

a. JK to T f/f

b. SR to D

6. Write the VERILOG code for question no 5.

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following items

in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth

table for each of the output signals.

Answer the post-lab questions

 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-

charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 points

EXP 6: COUNTERS

 Introduction

The purpose of this experiment is to introduce the design of Synchronous Counters. The student

should also be able to design n-bit up/down Counter.

 Software tools Requirement

Equipments:

Computer with Modelsim Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm

STEP 1: Open ModelSim XE II / Starter 5.7C

STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

 Logic Diagram

Figure 6.3.1 Updown Counter

 PreLab questions

1. How does synchronous counter differ from asynchronous counter?

2. How many flip-flops do you require to design Mod-6 counter.

3. What are the different types of counters?

4. What are the different types of shift registers?

5. How many f/fs are needed for n-bit counter?

6. What is meant by universal shift register?

VERILOG Program

Up Down Counter

moduleupdown(out,clk,reset,updown);

output [3:0]out;

inputclk,reset,updown;

reg [3:0]out;

always @(posedgeclk)

if(reset) begin

out<= 4'b0;

end else if(updown) begin

out<=out+1;

end else begin

out<=out-1;

end

endmodule

 Post Lab questions

1. Write the use of enable and reset signal.

2. What is the function of generic statement?

3. Design mod-6 counter using d flf and write the VERILOG code.

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the Lab

Report Requirements document available on the class web page. Be sure to include the following items in

your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth

table for each of the output signals.

Answer the post-lab questions

 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-

charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 points

EXP 7: BITWISE OPERATORS USING 8051

 Introduction

The purpose of this experiment is to implement bitwise operators using 8051. The student should also be

able to implement Logical Operations in 8051.

 Software tools Requirement

Equipments:

Computer with Keil µversion II Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Keil µversion II

 Pin Description of 8051

 Pre lab questions

1. Write an 8051 C program to toggle bits of P1 continuously forever with some delay.

2. What is the use of Watchdog timer?

3. What is sbit, sbyte?

4. What is DPTR?

5. What is Power ON Reset?

 Embedded C Program

#include<reg51.h>

void main()

{

unsigned int z;

P0=0x35&0x04;

P1=0x35|0x04;

P2=0x35^0x04;

P3=~0x04;

for(z=0;z<=50000;z++);

P0=0x35>>0x04;

P1=0x35<<0x04;

}

 Post lab:

1. Design a Calculator using 8051.

2. Write the Embedded C Program for the above.

3. Write the Embedded C Program for Bit Operations.

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following items

in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth

table for each of the output signals.

Answer the post-lab questions

 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-

charge

The lab report will be graded as follows (for the 30 points):

Embedded C code for each experiments 15 points

Output signal for all experiments and its model calculation 15 points

EXP 8: TOGGLE A PORT BIT IN 8051

 Introduction

The purpose of this experiment is to Toggle a Port bit in 8051. The student should also be able to control

Port Pin in 8051.

 Software tools Requirement

Equipments:

Computer with Keil µversion II Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Keil µversion II

 Pre lab questions

1. Write an 8051 C program to toggle bits of P1 continuously forever with some delay.

2. What is the use of Watchdog timer?

3. What is sbit, sbyte?

4. What is DPTR?

5. What is Power ON Reset?

 Embedded C Program

#include<reg51.h>

sbit Mybit=P1^0;

void main()

{

while(1)

{

unsigned int z;

Mybit=0;

for(z=0;z<=5000;z++);

Mybit=1;

for(z=0;z<=5000;z++);

}

}

 Post lab:

1. A door sensor is connected to the P1.1 pin, and a buzzer is connected

to P1.7. Write an 8051 C program to monitor the door sensor, and

when it opens, sound the buzzer. You can sound the buzzer by

sending a square wave of a few hundred Hz.

2. Write an 8051 C program to get the status of bit P1.0, save it, and

send it to P2.7 continuously.

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following items

in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth

table for each of the output signals.

Answer the post-lab questions

 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-

charge

The lab report will be graded as follows (for the 30 points):

Embedded C code for each experiments 15 points

Output signal for all experiments and its model calculation 15 points

EXP 9: DELAY OPERATORS IN 8051

 Introduction

The purpose of this experiment is to introduce delay operators 8051. The student should also be able to

write ISR for various Interrupts in 8051.

 Software tools Requirement

Equipments:

Computer with Keil µversion II Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Keil µversion II

 Pre lab questions

1. Write an 8051 C program to gets a single bit of data from P1.7 and sends it to P1.0.

2. What is ISR?

3. Name the two ways to access Interrupts?

4. What is Power ON Reset?

 Embedded C Program

#include<reg51.h>

void todelay(void)

{

TMOD=0x01;

TL0=0x08;

TR0=1;

TH0=0xEF;

}

void main()

{

while(1)

{

P1=0xAA;

todelay();

} }

 Postlab:

1. A door sensor is connected to the P1.1 pin, and a buzzer is connected

to P1.7. Write an 8051 C program to monitor the door sensor, and

when it opens, sound the buzzer. You can sound the buzzer by

sending a square wave of a few hundred Hz.

2. Write an 8051 C program to get the status of bit P1.0, save it, and

send it to P2.7 continuously.

 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following items

in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth

table for each of the output signals.

Answer the post-lab questions

 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-

charge

The lab report will be graded as follows (for the 30 points):

Embedded C code for each experiments 15 points

Output signal for all experiments and its model calculation 15 points

