

LABORATORY MANUAL

Python Language Programming Lab

Department of Computer Science and Engineering

LIST OF EXPERIMENTS

Exp.

Title of experiment

Corresponding

No. CO

1.

Demonstrate the working of ‘id’ and ‘type’ functions.
C 220.1

2.

Write a Python program to find all prime numbers within a given
C 220.1

 range

3.

Write a Python program to print ‘n terms of Fibonacci series
C 220.1

 using iteration

4.

Write a Python program demonstrate use of slicing in string.
C 220.1

 Write a Python program

 a) To add 'ing' at the end of a given string (length should be

 at least 3). If the given string already ends with 'ing'

 then add 'ly' instead. If the string length of the given string

5.

 is less than 3, leave it unchanged. Sample String : 'abc'
C 220.2

 Expected Result : 'abcing' Sample String : 'string'

 Expected Result : 'stringly'

 b) To get a string from a given string where all occurrences

 of its first char have been changed to '$', except the first

 char itself.

 Write a Python program to

 a) Compute the frequency of the words from the input. The

 output should output after sorting the key

6.

 alphanumerically.
C 220.2

b) program that accepts a comma separated sequence of

 words as input and prints the words in a comma-separated

 sequence after sorting them alphabetically.

 Write a Python program that accepts a sequence of whitespace

 7. separated words as input and prints the words after removing all C 220.2
 duplicate words and sorting them alphanumerically

 Write a Python program to demonstrate use of list & related

8.

functions
C 220.2

 Write a Python program to demonstrate use Dictionary& related

 9. functions. C 220.2

 Write a Python program to demonstrate use tuple, set & related

 10. functions. C 220.3

 Write a Python program to implement stack using list.

 11. C 220.3

 PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 6

 Write a Python program to implement queue using list.
C 220.3 12.

13.
Write a Python program to read and write from a file.

C 220.3

14.
Write a Python program copy a file.

C 220.3

15.

Write a Python program to demonstrate working of classes and
C 220.3 objects.

16.

Write a Python program to demonstrate class method & static
C 220.4 method.

17.
Write a Python program to demonstrate constructors.

C 220.4

18.
Write a Python program to demonstrate inheritance.

C 220.4

 Write a Python program to demonstrate

19. aggregation/compositions C 220.4

 Write a Python program to create a small GUI application for

20.
insert, update and delete in a table using Oracle as backend and

C 220.4
front end for creating form

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 8

Department of Computer Science & Engineering

Content Beyond Syllabus

21.
Write a Python program to compute area and circumference of a C 220.2
Triangle. Take input from user.

22.
Write a program to check if a number is Odd or even. Take input C 220.2
From user.

23.
Write a program to check that a given year is Leap Year or not. C 220.2

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 9

Department of Computer Science & Engineering

INTRODUCTION

Python is a language with a simple syntax, and a powerful set of libraries. It is an interpreted

language, with a rich programming environment, including a robust debugger and profiler. While

it is easy for beginners to learn, it is widely used in many scientific areas for data exploration.

This course is an introduction to the Python programming language for students without prior

programming experience. We cover data types, control flow, object-oriented programming, and

graphical user interface-driven applications. The examples and problems used in this course are

drawn from diverse areas such as text processing, simple graphics creation and image

manipulation, HTML and web programming, and genomics.

Scope & Objective:

1. Learn basic programming constructs –data types, decision structures, control structures in
python

2. Know how to use libraries for string manipulation and user-defined functions.
3. Learn to use in-built data structures in python – Lists, Tuples, Dictionary and

File handling.
4. Learn the fundamental principles of Object-Oriented Programming

5. Solve problems through application of OO concepts and using Files/database

Use Python Shell (using command line) and IDLE – Interactive development environment.

 To evaluate expression.
 To create a script.

Using IDLE

IDLE is the standard Python development environment. Its name is an acronym of "Integrated
DeveLopment Environment". It works well on both Unix and Windows platforms.

It has a Python shell window, which gives you access to the Python interactive mode. It also has
a file editor that lets you create and edit existing Python source files.

During the following discussion of IDLE's features, instead of passively reading along, you
should start IDLE and try to replicate the screenshots.

Interactive Python shell

When you start up IDLE, a window with an interactive Python shell will pop up:

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 10

Department of Computer Science & Engineering

You can type Python code directly into this shell, at the '>>>' prompt. Whenever you enter
a complete code fragment, it will be executed. For instance, typing:

>>> print "hello world"

and pressing ENTER, will cause the following to be displayed:

hello world

Try typing an underscore (_). Can you see it? On some operating systems, the bottoms of
hanging letters such as 'g' or 'y', as well as underscores, cannot be seen in IDLE. If this is the case
for you, go to Options -> Configure IDLE, and change the size of the default font to 9 or 11. This
will fix the problem!

IDLE can also be used as a calculator:

>>> 4+4

8
>>> 8**3

512

Addition (+), subtraction (-), multiplication (*), division (/), modulo (%) and power (**) operators

are built into the Python language. This means you can use them right away. If you want to use a
square root in your calculation, you can either raise something to the power of 0.5 or you can
import the math module
Below are two examples of square root calculation:

>>> 16**0.5

4.0
>>> import math

>>> math.sqrt(16)
4.0

The math module allows you to do a number of useful operations:

>>> math.log(16, 2)
4.0

>>> math.cos(0)
1.0

Note that you only need to execute the import command once after you start IDLE; however you
will need to execute it again if you restart the shell, as restarting resets everything back to how it
was when you opened IDLE.

Creating scripts

1. save your hello.py program in the ~/pythonpractice folder.

2. Open up the terminal program. ...

3. Type cd ~/pythonpractice to change directory to your pythonpractice folder, and hit
Enter.

4. Type chmod a+x hello.py to tell Linux that it is an executable program.
5. Type ./hello.py to run your program!

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 11

Department of Computer Science & Engineering

Program to add two integers.

Take input from user.

number1 = input(" Please Enter the First Number: ")

number2 = input(" Please Enter the second number: ")

Using arithmetic + Operator to add two
numbers sum = float(number1) + float(number2)
print('The sum of {0} and {1} is {2}'.format(number1, number2, sum))

Program to calculate area of a triangle:

(a) Given Base and height of the triangle. Take input from user.

(b) Given Three sides of a triangle (Make sure that it forms a triangle). Take

input from user.

Python Program to find Area of a Triangle

a = float(input('Please Enter the First side of a Triangle: '))

b = float(input('Please Enter the Second side of a Triangle: '))
c = float(input('Please Enter the Third side of a Triangle: '))

calculate the Perimeter

Perimeter = a + b + c

calculate the semi-
perimeter s = (a + b + c) / 2

calculate the area

Area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

print("\n The Perimeter of Traiangle = %.2f" %Perimeter);

print(" The Semi Perimeter of Traiangle = %.2f" %s); print("

The Area of a Triangle is %0.2f" %Area)

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 12

Department of Computer Science & Engineering

PREFACE

This manual will introduce you to the Python programming language. It’s aimed at beginning
programmers, but even if you’ve written programs before and just want to add Python to your
list of languages, It will get you started.

Python is a powerful high-level, object-oriented programming language created by Guido van
Rossum. It has simple easy-to-use syntax, making it the perfect language for someone trying to
learn computer programming for the first time.

This practical manual will be helpful for students of Computer Science & Engineering for
understanding the course from the point of view of applied aspects.

Though all the efforts have been made to make this manual error free, yet some errors might
have crept in inadvertently. Suggestions from the readers for the improvement of the manual

are most welcomed

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 13

Department of Computer Science & Engineering

DO’S AND DONT’S

DO’s

1. Conform to the academic discipline of the department.

2. Enter your credentials in the laboratory attendance register.

3. Read and understand how to carry out an activity thoroughly before coming to the

laboratory.

4. Ensure the uniqueness with respect to the methodology adopted for carrying out the

experiments.

5. Shut down the machine once you are done using it.

DONT’S

1. Eatables are not allowed in the laboratory.

2. Usage of mobile phones is strictly prohibited.

3. Do not open the system unit casing.

4. Do not remove anything from the computer laboratory without permission.

5. Do not touch, connect or disconnect any plug or cable without your faculty/laboratory

technician’s permission.

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 14

Department of Computer Science & Engineering

GENERAL SAFETY INSTRUCTIONS

1. Know the location of the fire extinguisher and the first aid box and how to use them

in case of an emergency.

2. Report fire or accidents to your faculty /laboratory technician immediately.

3. Report any broken plugs or exposed electrical wires to your faculty/laboratory

technician immediately.

4. Do not plug in external devices without scanning them for computer viruses.

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 15

Department of Computer Science & Engineering

DETAILS OF THE EXPERIMENTS CONDUCTED

(TO BE USED BY THE STUDENTS IN THEIR RECORDS)

DATE OF EXPT.
S. No

No CONDUCTION

TITLE OF THE

EXPERIMENT

MARKS FACULTY
PAGE

AWARDED SIGNATURE
No.

(20) WITH

 REMARK

1

2

3

4

5

6

7

8

9

10

11

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 16

PYTHON LANGUAGE PROGRAMMING LAB FILE (RCS 454)

Name

Roll No.

Section- Batch

Data Structures Using C/ Java Lab (RCS-355) Manual (CS, III SEM) Page 16

Department of Computer Science & Engineering

INDEX

 Experiment Experiment Date of Date of Faculty

 No. Name Conduction Submission Signature

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 17

Department of Computer Science & Engineering

EXPERIMENT 1

OBJECTIVE:- Demonstrate the working of ‘id’ and ‘type’ functions

THEORY:-

The id() function returns identity (unique integer) of an object.

The syntax of id() is:

id(object)

As we can see the function accepts a single parameter and is used to return the identity of an

object. This identity has to be unique and constant for this object during the lifetime. Two
objects with non-overlapping lifetimes may have the same id() value. If we relate this to C, then

they are actually the memory address, here in Python it is the unique id. This function is generally

used internally in Python.

Examples:

The output is the identity of the object passed. This is random but when running in the
same program, it generates unique and same identity.

Input : id(1025)
Output : 140365829447504

Output varies with different runs

Input : id("geek")
Output : 139793848214784

This program shows various
identities str1 = "geek"
print(id(str1))

str2 = "geek"

print(id(str2))

This will return True
print(id(str1) == id(str2))

Use in Lists

list1 = ["aakash", "priya", "abdul"]
print(id(list1[0]))

print(id(list1[2]))

This returns false

print(id(list1[0])==id(list1[2]))

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 19

Department of Computer Science & Engineering

Return Value from id():

The id() function returns identity of the object. This is an integer which is unique for the
given object and remains constant during its lifetime.

Example:

print('id of 5 =',id(5))
a = 5
print('id of a =',id(a))
b = a
print('id of b =',id(b))
c = 5.0
print('id of c =',id(c))

The ‘type’ function:

Python have a built-in method called as type which generally come in handy while figuring out
the type of variable used in the program in the runtime.

The type function returns the datatype of any arbitrary object. The possible types are listed in
the types module. This is useful for helper functions that can handle several types of data.

Example : Introducing type

>>> type(1)
<type 'int'>
>>> li = []
>>> type(li)

<type 'list'>

>>> import odbchelper
>>> type(odbchelper)

<type 'module'>

>>> import types

>>> type(odbchelper) == types.ModuleType
True

 type takes anything -- and I mean anything -- and returns its data type. Integers, strings,
lists, dictionaries, tuples, functions, classes, modules, even types are acceptable.

 type can take a variable and return its datatype.
 type also works on modules.

You can use the constants in the types module to compare types of objects. This is what the info
function does, as you'll see shortly.

VIVA QUESTIONS:

1.What data types are used in Python?

2.What is the difference between functions used in python and C? Are both the same?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 20

Department of Computer Science & Engineering

EXPERIMENT -2

OBJECTIVE:-To find all prime numbers within a given range.

THEORY:-

Prime numbers: A prime number is a natural number greater than 1 and having no positive

divisor other than 1 and itself.

For example: 3, 7, 11 etc are prime numbers.

Composite number: Other natural numbers that are not prime numbers are called composite

numbers.

For example: 4, 6, 9 etc. are composite numbers.

Here is source code of the Python Program to check if a number is a prime number.

r=int(input("Enter upper limit: "))

for a in range(2,r+1):
k=0

for i in range(2,a//2+1):
if(a%i==0):

k=k+1
if(k<=0):

print(a)

VIVA QUESTIONS:

1.Why don’t we use semi colon in this program?

2.What are Composite numbers?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 21

Department of Computer Science & Engineering

EXPERIMENT-3

OBJECTIVE:- To print ‘n terms of Fibonacci series using iteration.

THEORY: The Fibonacci numbers are the numbers in the following integer sequence.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……..

A Fibonacci sequence is the integer sequence of 0, 1, 1, 2, 3, 5, 8....

The first two terms are 0 and 1. All other terms are obtained by adding the preceding two terms.
This means to say the nth term is the sum of (n-1)th and (n-2)th term.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence
relation

Fn = Fn-1 + Fn-2 with initial valu F0 = 0 and F1 = 1

Program to display the Fibonacci sequence up to n-th term where n is provided by the user
change this value for a different result nterms = 10

uncomment to take input from the user
nterms = int(input("How many terms? "))

first two
terms n1 = 0
n2 = 1
count = 0

check if the number of terms is
valid if nterms <= 0:

print("Please enter a positive integer")
elif nterms == 1:

print("Fibonacci sequence upto",nterms,":")
print(n1)

else:
print("Fibonacci sequence upto",nterms,":")
while count < nterms:

print(n1)

nth = n1 + n2
update values
n1 = n2
n2 = nth
count += 1

VIVA QUESTIONS

1.What is the difference between iteration and recursion?

2.How looping technique is different from Recursion?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 22

Department of Computer Science & Engineering

EXPERIMENT-4

OBJECTIVE:- To demonstrate use of slicing in string.

THEORY:- Like other programming languages, it’s possible to access individual characters of a
string by using array-like indexing syntax. In this we can access each and every element of string

through their index number and the indexing starts from 0. Python does index out of bound
checking.

So, we can obtain the required character using syntax, string_name[index_position]:
The positive index_position denotes the element from the starting(0) and the negative

index shows the index from the end(-1).

EXAMPLE-

A python program to illustrate slicing in

strings x = "Geeks at work"

Prints 3rd character beginning from 0

print x[2]

Prints 7th
character print x[6]

Prints 3rd character from rear beginning from -
1 print x[-3]

Length of string is 10 so it is out of bound

print x[15]

Slicing in string

We use the slice notation on strings. In this example, we omit the first index to start at
the beginning, and then consume four characters total. We extract the first four letters.

Python program that slices string

word = "something"

Get first four characters.

part = word[:4] print(part)

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 23

Department of Computer Science & Engineering

Copy. With slicing, we can copy sequences like lists. We assign a new list variable to a

slice with no specified start or stop values. So the slice copies the entire list and returns it.

To extract substring from the whole string then we use the syntax like

string_name[beginning: end : step]

o end denotes the end index of string which is not inclusive

o steps denotes the distance between the two words. o

beginning represents the starting index of string

VIVA QUESTIONS

1.Are Strings immutable? Explain.

2.What are the ways to create a string?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 24

Department of Computer Science & Engineering

EXPERIMENT-5

OBJECTIVE:-

a. To add 'ing' at the end of a given string (length should be at least 3). If the given string
already ends with 'ing' then add 'ly' instead. If the string length of the given string
is less than 3, leave it unchanged.

Sample String : 'abc' Expected Result :

'abcing' Sample String : 'string' Expected Result
: 'stringly'

b. To get a string from a given string where all occurrences of its first char
have been changed to '$', except the first char itself.

Sample String : 'restart' Expected Result :

'resta$t' a. Python Code:

def add_string(str1):
length =
len(str1)

if length >
2:

if str1[-3:] ==
'ing':

str1 +=

'ly' else:
str1 +=

'ing' return str1
print(add_string('ab'))

print(add_string('abc'))
print(add_string('string'

))

b. PYTHON CODE:

def change_char(str1):

char = str1[0] length

= len(str1)
str1 = str1.replace(char,
'$') str1 = char + str1[1:]

return str1
print(change_char('restart'

))

VIVA QUESTIONS-

1. What are the built-in type does python provides?
2. In Python what are iterators?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 25

Department of Computer Science & Engineering

EXPERIMENT-6

OBJECTIVE:-
a. To compute the input. The frequency of the words from the output should output after

sorting the key alphanumerically.
b. Write a program that accepts a comma separated sequence of words as input and prints the

words in a comma-separated sequence after sorting them alphabetically.

a. Python code:

def word_count(str):
counts = dict()

words = str.split()

for word in words:

if word in counts:
counts[word] += 1

else:
counts[word] = 1

return counts

print(word_count('the quick brown fox jumps over the lazy dog.'))

b.
items = input("Input comma separated sequence of
words") words = [word for word in items.split(",")]

print(",".join(sorted(list(set(words)))))

VIVA QUESTIONS:

1.Define string operations.
2.What is concatenation function?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 26

Department of Computer Science & Engineering

EXPERIMENT-7

OBJECTIVE:- Write a program that accepts a sequence of whitespace separated words as input
and prints the words after removing all duplicate words and sorting them alphanumerically.

THEORY:-

Suppose the following input is supplied to the program:

hello world and practice makes perfect and hello world again
Then, the output should be:
again and hello makes perfect practice world

Hints:
In case of input data being supplied to the question, it should be assumed to be a

console input.

We use set container to remove duplicated data automatically and then use sorted() to sort

the data.

Solution:
s = raw_input()
words = [word for word in s.split(" ")]
print " ".join(sorted(list(set(words))))
#--#

#--#
VIVA QUESTIONS:

1.What is Dynamic programming?

2. Mention what are the rules for local and global variables in Python?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 27

Department of Computer Science & Engineering

EXPERIMENT-8

OBJECTIVE:- To demonstrate use of list & related functions
THEORY:- Python has a number of built-in data structures, including lists. Data structures

provide us with a way to organize and store data, and we can use built-in methods to retrieve or
manipulate that data.

list.append()

The method list.append(x) will add an item (x) to the end of a list. We’ll start with a list of
our fish that are dispersed throughout the aquarium.

fish = ['barracuda','cod','devil ray','eel']
This list is comprised of 4 string items, and their index numbers range from 'barracuda' at 0
to 'eel' at index 3.

We just got a new fish into the aquarium today, and we would like to add that fish to our list.
We’ll pass the string of our new fish type, 'flounder' into the list.append() method, and then
print out our modified list to confirm that the item was added.

fish.append('flounder')

print(fish)

Output

['barracuda', 'cod', 'devil ray', 'eel', 'flounder']

Now, we have a list of 5 string items that ends with the item we passed to the .append() function.

List.insert()

The list.insert(i,x) method takes two arguments, with i being the index position you would like to
add an item to, and x being the item itself.

Our aquarium acquired another new fish, an anchovy. You may have noticed that so far the
list fish is in alphabetical order. Because of this, we don’t want to just add the string 'anchovy' to

the end of fishwith the list.append() function. Instead, we’ll use list.insert() to add 'anchovy' to
the beginning of this list at index position 0:

fish.insert(0,'anchovy')

print(fish)

Output

['anchovy', 'barracuda', 'cod', 'devil ray', 'eel', 'flounder']

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 28

Department of Computer Science & Engineering

In this case, we added the string item to the front of the list. Each of the successive items will

now be at a new index number as they have all moved down. Therefore, 'barracuda' will be at
index 1, 'cod' will be at index 2, and 'flounder' — the last item — will be at index 5.

If, at this point, we are bringing a damselfish to the aquarium and we wanted to maintain
alphabetical order based on the list above, we would put the item at

index 3: fish.insert(3,'damselfish').

list.extend()

If we want to combine more than one list, we can use the list.extend(L) method, which takes in
a second list as its argument.

Our aquarium is welcoming four new fish from another aquarium that is closing. We have
these fish together in the list more_fish:

more_fish = ['goby','herring','ide','kissing gourami']

We’ll now add the items from the list more_fish to the list fish and print the list to ensure that
the second list was incorporated:

fish.extend(more_fish)

print(fish)

list.remove()

When we need to remove an item from a list, we’ll use the list.remove(x) method which
removes the first item in a list whose value is equivalent to x.

A group of local research scientists have come to visit the aquarium. They are doing research on the

kissing gourami species of fish. They have requested for us to loan our kissing gourami to
them, so we’d l ike to remove the item from the list to reflect this change:

fish.remove('kissing gourami')

print(fish)

Following the use of the list.remove() method, our list no longer has the 'kissing gourami' item.

VIVA QUESTIONS:

1.How do you remove duplicates froma list?

2. How To Determine The Size Of Your List in Python?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 29

'kissing gourami'

Department of Computer Science & Engineering

EXPERIMENT-9

OBJECTIVE:-How To Determine The Size Of Your List in Python

THEORY:- Python dictionary is an unordered collection of items. While other compound data types

have only value as an element, a dictionary has a key: value pair.

Dictionaries are optimized to retrieve values when the key is known

How to create a dictionary?
Creating a dictionary is as simple as placing items inside curly braces {} separated by comma.

An item has a key and the corresponding value expressed as a pair, key: value.

While values can be of any data type and can repeat, keys must be of immutable type
(string,number or tuple with immutable elements) and must be unique.

empty dictionary
my_dict = {}
dictionary with integer keys
my_dict = {1: 'apple', 2: 'ball'}
dictionary with mixed keys
my_dict = {'name': 'John', 1: [2, 4, 3]}

using dict()
my_dict = dict({1:'apple', 2:'ball'})
from sequence having each item as a

pair my_dict = dict([(1,'apple'), (2,'ball')])

How to access elements from a dictionary?
While indexing is used with other container types to access values, dictionary uses keys. Key can
be used either inside square brackets or with the get() method.

The difference while using get() is that it returns None instead of KeyError, if the key is not found.

Python code:

my_dict = {'name':'Jack', 'age': 26}

Output: Jack

print(my_dict['name'])

Output: 26
print(my_dict.get('age')

Trying to access keys which doesn't exist throws error
my_dict.get('address')
my_dict['address']

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 30

How to change or add elements in a dictionary?

Dictionary are mutable. We can add new items or change the value of existing items using
assignment operator.

If the key is already present, value gets updated, else a new key: value pair is added to the
dictionary.

Python code:
my_dict = {'name':'Jack', 'age': 26}

update value

my_dict['age'] = 27

#Output: {'age': 27, 'name': 'Jack'}
print(my_dict)

add item

my_dict['address'] = 'Downtown'

Output: {'address': 'Downtown', 'age': 27, 'name':
'Jack'} print(my_dict)

How to delete or remove elements from a dictionary?

We can remove a particular item in a dictionary by using the method pop(). This method removes
as item with the provided key and returns the value.

The method, popitem() can be used to remove and return an arbitrary item (key, value) form the
dictionary. All the items can be removed at once using the clear() method.

We can also use the del keyword to remove individual items or the entire dictionary itself.

Python code:

create a dictionary

squares = {1:1, 2:4, 3:9, 4:16, 5:25}

remove a particular item
Output: 16

print(squares.pop(4))

Output: {1: 1, 2: 4, 3: 9, 5: 25}
print(squares)

remove an arbitrary item
Output: (1, 1)

print(squares.popitem())

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 31

Output: {2: 4, 3: 9, 5: 25}
print(squares)

delete a particular item
del squares[5]

Output: {2: 4, 3: 9}
print(squares)

remove all items

squares.clear()

Output: {}
print(squares)

delete the dictionary itself
del squares

Throws Error
print(squares)

VIVA QUESTIONS:-

1.What is Dictionary?

2. When does a dictionary is used instead of a list?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 32

Department of Computer Science & Engineering

EXPERIMENT-10

OBJECTIVE:-To demonstrate use of tuple, set& related functions

THEORY: In Python programming, a tuple is similar to a list. The difference between the two

is that we cannot change the elements of a tuple once it is assigned whereas in a list, elements
can

be changed.

Creating a Tuple

A tuple is created by placing all the items (elements) inside a parentheses (), separated
by comma. The parentheses are optional but is a good practice to write it.

A tuple can have any number of items and they may be of different types (integer,
float, list, string etc.).

Python code:

empty tuple

Output: ()
my_tuple = ()
print(my_tuple
)

tuple having integers
Output: (1, 2, 3)
my_tuple = (1, 2,
3) print(my_tuple)

tuple with mixed datatypes
Output: (1, "Hello", 3.4)

my_tuple = (1, "Hello",

3.4) print(my_tuple)

nested tuple
Output: ("mouse", [8, 4, 6], (1, 2, 3))
my_tuple = ("mouse", [8, 4, 6], (1, 2,
3)) print(my_tuple)

tuple can be created without parentheses
also called tuple packing

Output: 3, 4.6, "dog"

my_tuple = 3, 4.6,
"dog" print(my_tuple)

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 33

https://www.programiz.com/python-programming/list

tuple unpacking is also possible

Output:
3

4.6
dog

a, b, c = my_tuple
print(a)

print(b)
print(c)

Accessing Elements in a Tuple

There are various ways in which we can access the elements of a tuple.

1. Indexing

Python code:

my_tuple = ('p','e','r','m','i','t')

Output: 'p'
print(my_tuple[0])

Output: 't'
print(my_tuple[5])

index must be in range

If you uncomment line 14,
you will get an error.

IndexError: list index out of range

#print(my_tuple[6])

index must be an integer
If you uncomment line 21,

you will get an error.
TypeError: list indices must be integers, not float

#my_tuple[2.0]

nested tuple
n_tuple = ("mouse", [8, 4, 6], (1, 2, 3))

nested index
Output: 's'
print(n_tuple[0][3])

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 34

nested index
Output: 4

print(n_tuple[1][1])

2. Deleting a Tuple

Deleting a tuple entirely is possible using the keyword del.

my_tuple = ('p','r','o','g','r','a','m','i','z')

can't delete items

if you uncomment line 8,
you will get an error:
TypeError: 'tuple' object doesn't support item deletion

#del my_tuple[3]

can delete entire tuple
NameError: name 'my_tuple' is not
defined del my_tuple
my_tuple

VIVA QUESTIONS

1.What is a tuple?

2.Differentiate between a tuple and a list?

PYTHON PROGRAMMING LAB MANUAL RCS-454, CS IVth SEM Page 35

Department of Computer Science & Engineering

EXPERIMENT NO 11
OBJECTIVE:-To implement stack using list.

THEORY
Stack is a linear data structure which follows a particular order in which the operations are
performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out).
Mainly the following three basic operations are performed in the stack:

 Push: Adds an item in the stack. If the stack is full, then it is said to be an Overflow
condition.

 Pop: Removes an item from the stack. The items are popped in the reversed order in
which they are pushed. If the stack is empty, then it is said to be an Underflow condition.

 Peek or Top: Returns top element of stack.
 isEmpty: Returns true if stack is empty, else false.

How to understand a stack practically?
There are many real life examples of stack. Consider the simple example of plates stacked over

one another in canteen. The plate which is at the top is the first one to be removed, i.e. the plate
which has been placed at the bottommost position remains in the stack for the longest period of

time. So, it can be simply seen to follow LIFO/FILO order.

Python program for implementation of stack

import maxsize from sys module
Used to return -infinite when stack is
empty from sys import maxsize

Function to create a stack. It initializes size of stack as
0 def createStack():

stack = []
return stack

Stack is empty when stack size is 0
def isEmpty(stack):

return len(stack) == 0

Function to add an item to stack. It increases size by
1 def push(stack, item):

stack.append(item)

print("pushed to stack " + item)

Function to remove an item from stack. It decreases size by
1 def pop(stack):

if (isEmpty(stack)):
return str(-maxsize -1) #return minus

infinite return stack.pop()
VIVA QUESTIONS

a) What is Stack and how implementation of Stack in c is different from python?

b) Difference between queue and stack?

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 36

Department of Computer Science & Engineering

EXPERIMENT NO 12

OBJECTIVE :- To implement queue using list

THEORY:- In a Queue data structure, we maintain two pointers, front and rear. The front
points the first item of queue and rear points to last item.
enQueue() This operation adds a new node after rear and moves rear to the next node.

deQueue() This operation removes the front node and moves front to the next node.

Python code to demonstrate Implementing
Queue using deque and

list from collections
import deque

queue = deque(["Ram", "Tarun", "Asif", "John"])

print(queue)
queue.append("Ak

bar") print(queue)
queue.append("Bir

bal") print(queue)
print(queue.poplef

t())
print(queue.poplef

t()) print(queue)

VIVA QUESTIONS
c) What is queue and how implementation of queue in c is different from python?
d) Difference between queue and

stack?

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 37

Department of Computer Science & Engineering

EXPERIMENT NO 13

OBJECTIVE :-To read and write from a file

THEORY:- When you’re working with Python, you don’t need to import a library in order to

read and write files. It’s handled natively in the language, albeit in a unique manner.

Python provides inbuilt functions for creating, writing and reading files. There are two types of
files that can be handled in python, normal text files and binary files (written in binary
language,0s and 1s).

 Text files: In this type of file, Each line of text is terminated with a special character
called EOL (End of Line), which is the new line character (‘\n’) in python by default.

 Binary files: In this type of file, there is no terminator for a line and the data is stored
after converting it into machine understandable binary language.

In this article, we will be focusing on opening, closing, reading and writing data in a text file.

File Access Modes
Access modes govern the type of operations possible in the opened file. It refers to how the file
will be used once its opened. These modes also define the location of the File Handle in the file.

File handle is like a cursor, which defines from where the data has to be read or written in the file.
There are 6 access modes in python.

 Read Only (‘r’) : Open text file for reading. The handle is positioned at the beginning of
the file. If the file does not exists, raises I/O error. This is also the default mode in which
file is opened.

 Read and Write (‘r+’) : Open the file for reading and writing. The handle is positioned at
the beginning of the file. Raises I/O error if the file does not exists.

 Write Only (‘w’) : Open the file for writing. For existing file, the data is truncated and
over-written. The handle is positioned at the beginning of the file. Creates the file if the
file does not exists.

 Write and Read (‘w+’) : Open the file for reading and writing. For existing file, data is
truncated and over-written. The handle is positioned at the beginning of the file.

 Append Only (‘a’) : Open the file for writing. The file is created if it does not exist. The
handle is positioned at the end of the file. The data being written will be inserted at the
end, after the existing data.

 Append and Read (‘a+’) : Open the file for reading and writing. The file is created if it
does not exist. The handle is positioned at the end of the file. The data being written will
be inserted at the end, after the existing data.

Opening a File

Open function to open the file "MyFile1.txt"
(same directory) in append mode and

file1 = open("MyFile.txt","a")

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 38

store its reference in the variable file1
and "MyFile2.txt" in D:\Text in file2
file2 = open(r"D:\Text\MyFile2.txt","w+")

Closing a file
Opening and Closing a file "MyFile.txt"
for object name file1.

file1 = open("MyFile.txt","a")

file1.close()

Writing to a file

There are two ways to write in a file.

1. write() : Inserts the string str1 in a single line in the text

file. File_object. write (str1)

2. writelines() : For a list of string elements, each string is inserted in the text file.Used to

insert multiple strings at a single time.

File_object.writelines(L) for L = [str1, str2, str3]

Program to show various ways to read and

write data in a file.

file1 = open("myfile.txt","w")
L = ["This is Delhi \n","This is Paris \n","This is London \n"]

\n is placed to indicate EOL (End of
Line) file1.write("Hello \n")
file1.writelines(L)
file1.close() #to change file access modes

file1 = open("myfile.txt","r+")

print "Output of Read function is "

print file1.read()
print

seek(n) takes the file handle to the nth

bite from the beginning.
file1.seek(0)

print "Output of Readline function is "

print file1.readline()
print

file1.seek(0)

To show difference between read and readline

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 39

print "Output of Read(9) function is "

print file1.read(9)
print file1.seek(0)

print "Output of Readline(9) function is "
print file1.readline(9)

file1.seek(0)

readlines function
print "Output of Readlines function is "

print file1.readlines()
print

file1.close()

VIVA QUESTIONS
1.What is write command?
2.What is the difference between write and append?

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 40

Department of Computer Science & Engineering

EXPERIMENT NO 14

OBJECTIVE: Appending to a file

THEORY:- To add something at the end. For example, you can append one file to another or
you can append a field to a record. Do not confuse append with insert. Appendalways means to
add at the end. Insert means to add in between.

Python program to illustrate
Append vs write mode

file1 = open("myfile.txt","w")
L = ["This is Delhi \n","This is Paris \n","This is London
\n"] file1.close()

Append-adds at last

file1 = open("myfile.txt","a")#append mode
file1.write("Today \n")

file1.close()

file1 = open("myfile.txt","r")
print "Output of Readlines after appending"

print file1.readlines()
print

file1.close()

Write-Overwrites

file1 = open("myfile.txt","w")#write mode
file1.write("Tomorrow \n")

file1.close()

file1 = open("myfile.txt","r")
print "Output of Readlines after writing"

print file1.readlines()
print

file1.close()

VIVA QUESTIONS
1.What is the difference write and read mode?
2.What are the symbols used for the mode?

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 41

Department of Computer Science & Engineering

EXPERIMENT NO 15

OBJECTIVE :-To demonstrate working of classes and objects

THEORY: Like function definitions begin with the keyword def, in Python, we define a class

using the keyword class.The first string is called docstring and has a brief description about the
class. Although not mandatory, this is recommended.

class MyNewClass:

'''This is a docstring. I have created a new class'''

pass

class MyClass:
"This is my second class"

a = 10
def func(self):

print('Hello')

Output: 10

print(MyClass.a)

Output: <function MyClass.func at
0x0000000003079BF8> print(MyClass.func)

Output: 'This is my second class'

print(MyClass. doc)

Creating an Object in Python

We saw that the class object could be used to access different attributes.

It can also be used to create new object instances (instantiation) of that class. The procedure to
create an object is similar to a function call.

>>> ob = MyClass()
class MyClass:

"This is my second
class" a = 10
def func(self):

print('Hello')

create a new MyClass

ob = MyClass()

Output: <function MyClass.func at 0x000000000335B0D0>

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 42

https://www.programiz.com/python-programming/keyword-list#def
https://www.programiz.com/python-programming/keyword-list#class
https://www.programiz.com/python-programming/function

print(MyClass.func)

Output: <bound method MyClass.func of < main .MyClass object at 0x000000000332DEF0>>

print(ob.func)

Calling function func()
Output:
Hello ob.func()

VIVA QUESTIONS

1. What is class?How to define class in python?
2. What is object?How to use it in python?

PYTHON LANGUAGE PROGRAMMING LAB (RCS-454) Manual Page 43

Department of Computer Science & Engineering

EXPERIMENT NO 16

OBJECTIVE :To demonstrate class method & static method

THEORY:- Class Method
The @classmethod decorator, is a builtin function decorator that is an expression that gets
evaluated after your function is defined. The result of that evaluation shadows your function
definition.
A class method receives the class as implicit first argument, just like an instance method receives
the instance

class C(object):

@classmethod
def fun(cls, arg1, arg2, ...):

....
fun: function that needs to be converted into a class method

returns: a class method for function.

 A class method is a method which is bound to the class and not the object of the class.
 They have the access to the state of the class as it takes a class parameter that points to the

class and not the object instance.
 It can modify a class state that would apply across all the instances of the class. For

example it can modify a class variable that will be applicable to all the instances.
 Static Method

 A static method does not receive an implicit first argument.

class C(object):
@staticmethod

def fun(arg1, arg2, ...):
...

returns: a static method for function fun.
Python program to demonstrate
use of class method and static
method. from datetime import date

class Person:

def init (self, name, age):
self.name = name
self.age = age

a class method to create a Person object by birth
year. @classmethod
def fromBirthYear(cls, name, year): return

cls(name, date.today().year - year)

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 45

mailto:@classmethod
http://www.geeksforgeeks.org/function-decorators-in-python-set-1-introduction/
mailto:@classmethod
mailto:@staticmethod
mailto:@classmethod

a static method to check if a Person is adult or not.
@staticmethod
def isAdult(age):

return age > 18

person1 = Person('mayank', 21)

person2 = Person.fromBirthYear('mayank', 1996)

print person1.age
print person2.age

print the result

print Person.isAdult(22)

VIVA QUESTIONS
1. What is static method in java?
2. What is auto and static in C?

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 46

mailto:@staticmethod

Department of Computer Science & Engineering

EXPERIMENT NO. 17

OBJECTIVE :-To demonstrate constructors

THEORY

Class functions that begins with double underscore () are called special functions as they have
special meaning.

One particular interest is the init () function. This special function gets called whenever a new
object of that class is instantiated.

This type of function is also called constructors in Object Oriented Programming (OOP). We
normally use it to initialize all the variables.

class ComplexNumber:
def init (self,r = 0,i = 0):

self.real = r

self.imag = i
def getData(self):

print("{0}+{1}j".format(self.real,self.imag))
Create a new ComplexNumber
object c1 = ComplexNumber(2,3)
Call getData() function
Output: 2+3j

c1.getData()
Create another ComplexNumber object

and create a new attribute 'attr'
c2 = ComplexNumber(5)

c2.attr = 10
Output: (5, 0, 10)
print((c2.real, c2.imag, c2.attr))

but c1 object doesn't have attribute 'attr'
AttributeError: 'ComplexNumber' object has no attribute
'attr' c1.attr

VIVA QUESTIONS

1. What is constructor in java ?

2. What is destructor in C++?

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 47

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 48

Department of Computer Science & Engineering

EXPERIMENT NO 18

OBJECTIVE :-To demonstrate inheritance

THEORY:- Inheritance is a powerful feature in object oriented programming.

It refers to defining a new class with little or no modification to an existing class. The new class is
called derived (or child) class and the one from which it inherits is called the base (or parent)
class.

SYNTAX

class BaseClass:
Body of base class

class DerivedClass(BaseClass):
Body of derived class

Derived class inherits features from the base class, adding new features to it. This results into re-
usability of code.

class Polygon:

def init (self, no_of_sides):
self.n = no_of_sides
self.sides = [0 for i in range(no_of_sides)]

def inputSides(self):

self.sides = [float(input("Enter side "+str(i+1)+" : ")) for i in range(self.n)]

def dispSides(self):
for i in range(self.n):

print("Side",i+1,"is",self.sides[i])
This class has data attributes to store the number of sides, n and magnitude of each side as a list,
sides.
Method inputSides() takes in magnitude of each side and similarly, dispSides() will display these
properly.

A triangle is a polygon with 3 sides. So, we can created a class called Triangle which inherits from
Polygon. This makes all the attributes available in class Polygon readily available in Triangle. We
don't need to define them again (code re-usability). Triangle is defined as follows.

class Triangle(Polygon):
def init (self):

Polygon. init (self,3)
def findArea(self):

a, b, c = self.sides
calculate the semi-
perimeter s = (a + b + c) / 2
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

print('The area of the triangle is %0.2f' %area)
VIVA QUESTIONS

1. What is Polymorphism?

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 49

https://www.programiz.com/python-programming/class

2. What is multiple and multilevel inheritance?

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 50

EXPERIMENT NO 19

OBJECTIVE :-To demonstrate aggregation/composition

THEORY:- Composition. Composition is a specialized form of aggregation in which if the

parent object is destroyed, the child objects would cease to exist. It is actually a strong type of

aggregation and is also referred to as a "death" relationship. According to some formal

definitions the term composition implies that the two objects are quite strongly linked – one

object can be thought of as belonging exclusively to the other object. If the owner object ceases to

exist, the owned object will probably cease to exist as well. If the link between two objects is

weaker, and neither object has exclusive ownership of the other, it can also be called aggregation.

class Student:
def init (self, name, student_number):

self.name = name
self.student_number = student_number

self.classes = []

def enrol(self, course_running):

self.classes.append(course_running)
course_running.add_student(self)

class Department:
def init (self, name, department_code):

self.name = name
self.department_code = department_code

self.courses = {}

def add_course(self, description, course_code, credits):

self.courses[course_code] = Course(description, course_code, credits, self)
return self.courses[course_code]

class Course:
def init (self, description, course_code, credits, department):

self.description = description
self.course_code = course_code

self.credits = credits
self.department = department

self.department.add_course(self)

self.runnings = []

def add_running(self, year):
self.runnings.append(CourseRunning(self,
year)) return self.runnings[-1]

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 51

class CourseRunning:
def init (self, course, year):

self.course = course
self.year = year

self.students = []

def add_student(self, student):

self.students.append(student)

maths_dept = Department("Mathematics and Applied Mathematics", "MAM")

mam1000w = maths_dept.add_course("Mathematics 1000", "MAM1000W", 1)
mam1000w_2013 = mam1000w.add_running(2013)

bob = Student("Bob", "Smith")

bob.enrol(mam1000w_2013)

VIVA QUESTIONS

1. What is aggregation?

2. What is generalization?

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 52

Department of Computer Science & Engineering

EXPERIMENT NO 20

OBJECTIVE:- To create a small GUI application for insert, update and delete in a table using

Oracle as backend and front end for creating form

THEORY:- Installing MySQL Python connector is straightforward. For example, to install it in
Windows environment, you use the following steps:

Unpack the download file into a temporary directory e.g., C:\temp

Start a console window and switch to the folder where you unpack the connector

> cd c:\temp

1
> cd c:\temp

Inside the c:\temp folder, use the following command:
c:\temp > python setup.py install

1
c:\temp > python setup.py install

Verifying MySQL Connector/Python installation

After installing the MySQL Python connector, you need to test it to make sure that it is working
correctly and you are able to connect to MySQL database server without any issues. To verify the
installation, you use the following steps:

Open Python command line

Type the following code

>>> import mysql.connector

>>> mysql.connector.connect(host='localhost',database='mysql',user='root',password='')

1

2

>>> import mysql.connector

>>> mysql.connector.connect(host='localhost',database='mysql',user='root',password='')

If the output is shown as below, you have been successfully installing the MySQL Python
connector in your system.

<mysql.connector.connection.MySQLConnection object at

0x0187AE50> 1

<mysql.connector.connection.MySQLConnection object at 0x0187AE50>

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 53

Department of Computer Science & Engineering

EXPERIMENT NO 21

OBJECTIVE:- Write a program to compute area and circumference of a triangle. Take input from

user.

THEORY : Area of Triangle is math.sqrt((s*(s-a)*(s-b)*(s-c)))

Python Code :

Python Program to find Area of a Triangle using

Functions import math

def Area_of_Triangle(a, b, c):

calculate the Perimeter

Perimeter = a + b + c
calculate the semi-
perimeter s = (a + b + c) / 2

calculate the area

Area = math.sqrt((s*(s-a)*(s-b)*(s-c)))

print("\n The Perimeter of Traiangle = %.2f" %Perimeter);
print(" The Semi Perimeter of Traiangle = %.2f" %s);
print(" The Area of a Triangle is %0.2f" %Area)

Area_of_Triangle(6, 7, 8)

VIVA QUESTIONS

1. What is formula of area of traingle?

2. What is value of S?

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 55

Department of Computer Science & Engineering

EXPERIMENT NO 22

OBJECTIVE:- Write a program to check if a number is Odd or even. Take input from

user.

THEORY : If the number is divisible by 2 , that number is called even number, else the number

is odd.

Python Code :

Python program to check if the input number is odd or even.

A number is even if division by 2 give a remainder of 0.

If remainder is 1, it is odd number.

num = int(input("Enter a number: "))

if (num % 2) == 0:

print("{0} is Even".format(num))

else:

print("{0} is Odd".format(num))

VIVA QUESTIONS

1. Which number is called odd number?

2. What is if… else condition ?

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 56

Computer Science & Engineering

EXPERIMENT NO 23

OBJECTIVE:-Write a program to check that a given year is Leap Year or not

THEORY : If the year is divisible by 4, 100 and 400 then that year is a leap year.

Python Code :

year = 2000

To get year (integer input) from the user

year = int(input("Enter a year: "))

if (year % 4) == 0:

if (year % 100) == 0:

if (year % 400) == 0:

print("{0} is a leap year".format(year))

else:

print("{0} is not a leap year".format(year))

else:

print("{0} is a leap year".format(year))

else:

print("{0} is not a leap year".format(year))

VIVA QUESTIONS :

1. What do you mean by Leap Year?

2. What is nested if.. else condition?

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 57

RCS454: PYTHON LANGUAGE PROGRAMMING LAB

Write a Python program to: -
1. Demonstrate the working of ‘id’ and ‘type’ functions

2. To find all prime numbers within a given range.

3. To print ‘n terms of Fibonacci series using iteration.

4. To demonstrate use of slicing in string

5. (a) To add 'ing' at the end of a given string (length should be at least 3). If the given string

already ends with 'ing' then add 'ly' instead. If the string length of the given string is less

than 3, leave it unchanged. Sample String : 'abc' Expected Result : 'abcing' Sample String :

'string' Expected Result : 'stringly'

(b) To get a string from a given string where all occurrences of its first char have been

changed to '$', except the first char itself.

6. (a) To compute the frequency of the words from the input. The output should output after

sorting the key alphanumerically.

(b) Write a program that accepts a comma separated sequence of words as input and

prints the words in a comma-separated sequence after sorting them alphabetically.

7. Write a program that accepts a sequence of whitespace separated words as input and prints

the words after removing all duplicate words and sorting them alphanumerically.

8. To demonstrate use of list & related functions

9. To demonstrate use of Dictionary& related functions

10. To demonstrate use of tuple, set& related functions

11. To implement stack using list

12. To implement queue using list

13. To read and write from a file
14. To copy a file

15. To demonstrate working of classes and objects

16. To demonstrate class method & static method

17. To demonstrate constructors

18. To demonstrate inheritance

19. To demonstrate aggregation/composition

20. To create a small GUI application for insert, update and delete in a table using Oracle as

PYTHON PROGRAMMIN LAB MANUAL RCS-454, CS 4th SEM Page 58

