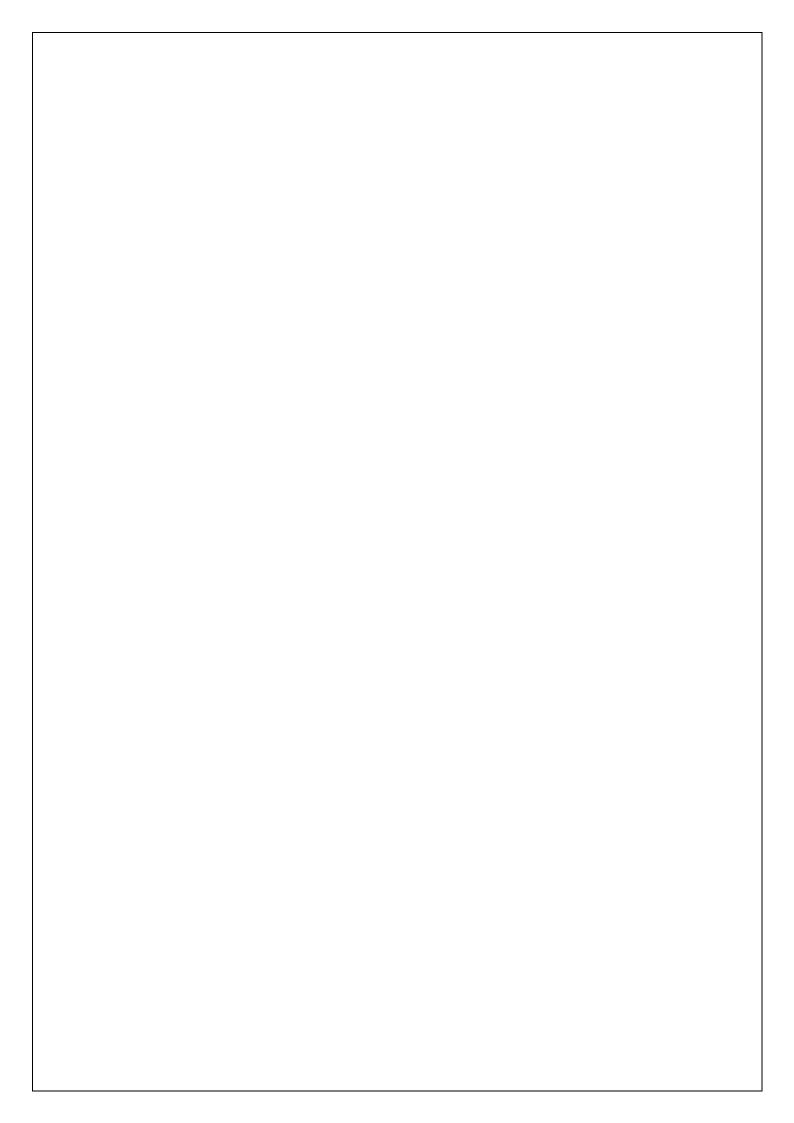
PROGRAMMING MAT LAB MANUAL

Class : II B.Tech III Semester

Branch : ME



JAIPUR INSTITUTE OF TECHNOLOGY-GROUP OF INSTITUTIONS JAIPUR

	Program Outcomes
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions : Design solutions for complex engineering problems anddesign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems : Use research-based knowledge and researchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineeringcommunity and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance : Demonstrate knowledge and understanding of theengineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage inindependent and life-long learning in the broadest context of technological change.

	Program Specific Outcomes - Aeronautical Engineering
PSO1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products
PSO2	Problem solving skills : imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles
PSO3	Practical implementation and testing skills : Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies.
PSO4	Successful career and entrepreneurship : To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats
	Program Specific Outcomes - Computer Science And Engineering
PSO1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.
PSO2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.
PSO3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.
	Program Specific Outcomes - Information Technology
PSO1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.
PSO2	Software Engineering practices: The ability to apply standard practices and strategies in software service management using open-ended programming environments with agility to deliver a quality service for business success.
PSO3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.
Pro	ogram Specific Outcomes - Electronics And Communication Engineering
PSO1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.
PSO2	Problem-solving Skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.
PSO3	Successful Career and Entrepreneurship: An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur

PSO1	Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.
PSO2	Problem-Solving Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.
PSO3	Successful Career and Entrepreneurship: The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test, maintain power system and applications.
	Program Specific Outcomes - Mechanical Engineering
PSO1	To produce engineering professional capable of analyzing and synthesizing mechanical systems including allied engineering streams.
PSO2	An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.
PSO3	To build the nation, by imparting technological inputs and managerial skills to become technocrats.
	Program Specific Outcomes - Civil Engineering
PSO1	Graduates will have an ability to describe, analyze and solve problems using mathematics and systematic problem-solving techniques.
PSO2	Graduates will have an ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety manufacturability and sustainability.
PSO3	Graduates will have a board education necessary to understand the impact of engineering solutions in a global, economic and societal context.
PSO4	To provide graduates many post graduate educational and research opportunities at top universities and research laboratories for its best engineering minds.
PSO5	Graduates will have an ability to function on multi disciplinary teams.

ATTAINMENT OF PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES

Expt. No.	Program Outcomes Attained	Program Specific Outcomes Attained		
		AE	ME	CE
I	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
II	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
III	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
IV	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
V	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
VI	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
VII	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
VIII	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
IX	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
X	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
XI	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3
XII	PO1, PO2, PO3, PO4, PO5, PO9, PO12	PSO1, PSO2	PSO2	PSO3

COMMUTATIONAL MATHEMATICSLABORATORY SYLLABUS

Recommended Systems/Software Requirements:

Intel based desktop PC with minimum of 166 MHZ or faster processor with at least 64 MB RAM and 100MB free disk space. MATLAB compiler.

LIST OF EXPERIMENTS

Week-1 BASIC FEATURES

- a. To Know the history and features of MATLAB
- b. To Know the local environment of MATLAB

Week-2 ALGEBRA

- a. Find the roots of the equations $6x^5 41x^4 + 97x^3 97x^2 + 41x 6$
- b. Find the values of x,y,z of the equations x+y+z=3,x+2y+3z=4,x+4y+9z=6
- c. For $f(x)=8x^8-7x^7+12x^6-5$ x^5+8 x^4+13 $x^3-12x+9$ compute f(2), roots of f(x) and plotfor $0 \le x \le 20$

Week-3 CALCULUS

- a. Verification of basic properties of limits for the functions f(x) = (3x + 5)/(x 3) and $g(x) = x^2 + 1$ as x ends to 4.
- b. Find the derivative of $(x+2)(x^2+3)$
- c. Calculate the area enclosed between the x-axis, and the curve $y=x^3-2x+5$ and the ordinates x=1 and x=2.

Week-4 MATRICES

a.

a. Find the addition, subtraction and multiplication of matrix

$$A = \begin{bmatrix} 1 & 2 & -9 \\ 2 & -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
$$\begin{bmatrix} 3 & -4 & 3 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 \end{bmatrix}$$

- b. Find the transpose of matrix A= $\begin{bmatrix} 1 & 2 & -9 \\ 2 & -1 & 2 \end{bmatrix}$
 - [3 -4 3 [1 2 3]
- c. Find the inverse of matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{bmatrix}$

Week-5 SYSTEM OF LINEAR EQUATIONS

Find the rank of matrix A= $\begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \\ 13 & 14 & 15 \end{bmatrix}$

Find the row echelon form A= $\begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \\ 13 & 14 & 15 \end{bmatrix}$

b.
c. Find the LU decomposition of the matrix $\begin{bmatrix} 2 & -3 & -1 \\ 1/2 & 1 & -1 \end{bmatrix}$ $\begin{vmatrix} 0 & 1 & -1 \end{vmatrix}$

LINEAR TRANSFORMATION Week-6

2 3 5 6 Find the characteristics equation of the matrix 4 7 8 0

a. Find the Eigen values of the matrix

$$\begin{bmatrix} -4 & 2 & 4 \\ -5 & 2 & 8 \end{bmatrix}$$

c. Find the Eigen vector of the matrix

c. Find the Eigen vector of the matrix
$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 0 & 2 \end{bmatrix}$$

DIFFERENTIATION AND INTEGRATION Week-7

solve
$$(D^2 + 5D + 6)y = e^x$$

solve
$$\iint_0^{5x} x(x^2 + y^2) dx dy$$

b.

c. solve
$$\int_0^{\infty} \int_0^{\infty} xyzdxdydz$$

Week-8 INTERPOLATION AND CURVE FITTING

- a. Find the lagrange's polynomial for the following data (0,2),(1,3),(2,12),(5,147)
- b. Fit a straight line for the following data (0,12),(5,15),(10,17),(15,22),(20,24),(25,30)
- c. Fit a polynomial curve for the following data (0,1),(1,1.8),(2,1.3),(3,2.5),(4,6.3)

Week-9 **ROOT FINDING**

write a program to find the root of the equation by using x^3-5x+3

- a. Bisection Method
- b. Regula Falsi
- c. Newton Raphson Method

NUMERICAL DIFFERENTION AND INTEGRATION Week-10

- a. Evaluate e^x by using trapezoidal and Simpson's method
- Evaluate $y^1=x+y$, y(0)=1 of size h=0.2 by using Euler's and Runge-Kutta method

Week-11 **3D PLOTTING**

- a. Evaluate $\int (3x^2 8y^2) dx + (4y 6xy) dy$ Where region is bounded by $y = x^2$, $y = \sqrt{x}$
- b. Plot the surface for $f = (2 \cos \pi x)e^{y}$
- c. Plot the surface for 2+cost

VECTOR CALCULUS Week-12

- a. Find grad f where $f=x^3+y^3+3xyz$ at (1,1,1)
- b. If $\overline{f} = xy^2i + 2x^2yzj 3yz^2k$ find div \overline{f} at the point (1,-1,1)
- c. If $\overline{f} = xy^2i + 2x^2yzj 3yz^2k$ find curl \overline{f} at the point (1,-1,1)

OBJECTIVES

- a. To Know the history and features of MATLAB
- b. To Know the local environment of MATLAB

CONTENT

Introduction

MATLAB is a high-level language and interactive environment for numerical computation, visualization, and programming. Using MATLAB, you can analyse data, develop algorithms, and create models and applications. The language, tools, and built-inmath functions enable you to explore multiple approaches and reach a solution fasterthan with spread sheets or traditional programming languages, such as C/C++ or Java. You can use MATLAB for a range of applications, including signal processing and communications, image and video processing, control systems, test and measurement, computational finance, and computational biology. More than a million engineers and scientists in industry and academia use MATLAB, the language of technical computing.

History

- Developed primarily by Cleve Moler in the 1970's Derived from FORTRAN subroutines LINPACK and EISPACK, linear and eigenvaluesystems.
- Developed primarily as an interactive system to access LINPACK and EISPACK.
- Gained its popularity through word of mouth, because it was not socially distributed.
- Rewritten in C in the 1980's with more functionality, which include plotting routines.
- The Math Works Inc. was created (1984) to market and continue development of MATLAB.

Strengths

- MATLAB may behave as a calculator or as a programming language
- MATLAB combine nicely calculation and graphic plotting.
- MATLAB is relatively easy to learn
- MATLAB is interpreted (not compiled), errors are easy to fix
- MATLAB is optimized to be relatively fast when performing matrix operations
- MATLAB does have some object-oriented elements

Weaknesses

- MATLAB is not a general purpose programming language such as C, C++, or FORTRAN
- MATLAB is designed for scientific computing, and is not well suitable for other applications
- MATLAB is an interpreted language, slower than a compiled language such as C++
- MATLAB commands are specific for MATLAB usage. Most of them do not have a direct equivalent with other programming language commands

Competition

One of MATLAB's competitors is Mathematica the symbolic computation program.MATLAB is more convenient for numerical analysis and linear algebra. It is frequently used in engineering community. Mathematica has superior symbolic manipulation, making it popular among physicists.

There are other competitors: Scilab, GNU Octave, and Rlab

Key Features

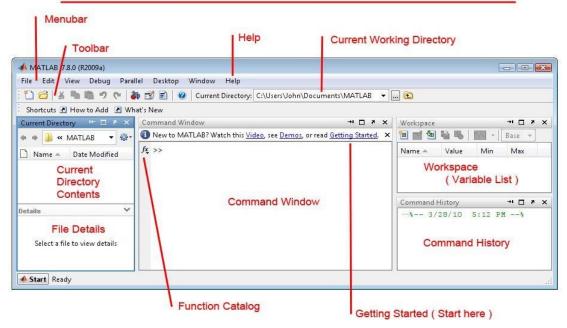
- It is a high-level language for numerical computation, visualization and application development.
- It also provides an interactive environment for iterative exploration, design and problem solving.
- It provides vast library of mathematical functions for linear algebra, statistics, Fourier analysis, filtering, optimization, numerical integration and solving ordinary differential equations.
- It provides built-in graphics for visualizing data and tools for creating custom plots.
- MATLAB's programming interface gives development tools for improving code quality, maintainability, and maximizing performance.
- It provides tools for building applications with custom graphical interfaces.
- It provides functions for integrating MATLAB based algorithms with external applications and languages such as C, Java, .NET and Microsoft Excel.

MATLAB's Power of Computational Mathematics

MATLAB is used in every facet of computational mathematics. Following are some commonly used mathematical calculations where it is used most commonly:

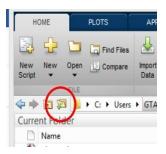
- Dealing with Matrices and Arrays
- 2-D and 3-D Plotting and graphics
- Linear Algebra
- Algebraic Equations
- Non-linear Functions
- Statistics
- Data Analysis
- Calculus and Differential Equations
- Numerical Calculations
- Integration
- Transforms
- Curve Fitting
- Various other special functions

Uses of MATLAB

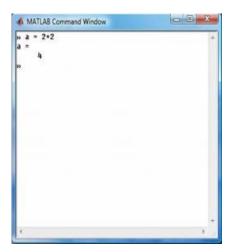

MATLAB is widely used as a computational tool in science and engineering encompassing the fields of physics, chemistry, math and all engineering streams. It is used in a range of applications including:

- Signal processing and Communications
- Image and video Processing
- Control systems
- Test and measurement
- Computational finance
- Computational biology

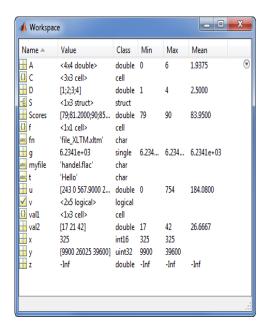
Understanding the MATLAB Environment


MATLAB development IDE can be launched from the icon created on the desktop. The main working window in MATLAB is called the desktop. When MATLAB is started, the desktop appears in its default layout:

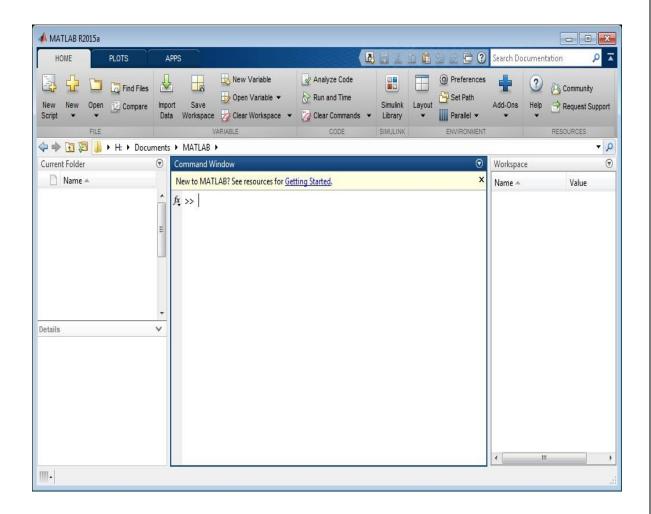
The MATLAB Work Environment



The desktop includes these panels:


Current Folder - This panel allows you to access the project folders and files.

Command Window - This is the main area where commands can be entered at the command line. It is indicated by the command prompt (>>).



Workspace - The workspace shows all the variables created and/or imported from files.

Command History - This panel shows or rerun commands that are entered at the command line.

You are now faced with the MATLAB desktop on your computer, which contains the prompt (>>) in the Command Window. Usually, there are 2 types of prompt:

>>For full version EDU> for educational version

Note:

- 1. To simplify the notation, we will use this prompt, >>, as a standard prompt sign, though our MATLAB version is for educational purpose.
- 2. MATLAB adds variable to the workspace and displays the result in the Command Window.

Managing workspace and file commands

Command	Description
cd	Change current directory
clc	Clear the Command Window
clear (all)	Removes all variables from the workspace
clear x	Remove x from the workspace
copy file	Copy file or directory
delete	Delete files

dir	Display directory listing
exist	Check if variables or functions are defined
help	Display help for MATLAB functions
look for	Search for specified word in all help entries
mkdir	Make new directory
move file	Move file or directory
pwd	Identify current directory
rmdir	Remove directory
type	Display contents of file
what	List MATLAB files in current directory
which	Locate functions and files
who	Display variables currently in the workspace
whos	Display information on variables in the workspace

Commonly used Operators and Special Characters

MATLAB supports the following commonly used operators and special characters:

Operator	Purpose
+	Plus; addition operator.
-	Minus; subtraction operator.
*	Scalar and matrix multiplication operator.
*	Array multiplication operator.
٨	Scalar and matrix exponentiation operator.
.^	Array exponentiation operator.
1	Left-division operator.
1	Right-division operator.
.\	Array left-division operator.
./	Array right-division operator.
:	Colon; generates regularly spaced elements and represents an entire row or column.
()	Parentheses; encloses function arguments and array indices; overrides precedence.
[]	Brackets; enclosures array elements.
•	Decimal point.
•••	Ellipsis; line-continuation operator
,	Comma; separates statements and elements in a row
;	Semicolon; separates columns and suppresses display.
%	Percent sign; designates a comment and specifies formatting.

_	Quote sign and transpose operator.
•-	Non-conjugated transpose operator.
=	Assignment operator.

Note:

If you end a statement with a semicolon, MATLAB performs the computation, butsuppresses the display of output in the Command Window.

Special Variables and Constants

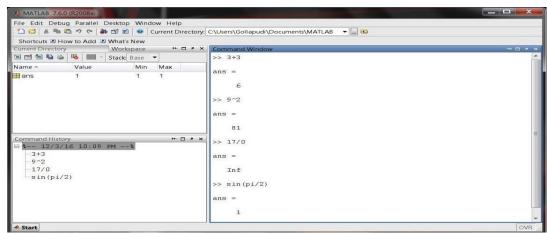
MATLAB supports the following special variables and constants:

Name	Meaning
ans	Most recent answer.
eps	Accuracy of floating-point precision.
i,j	The imaginary unit $\sqrt{-1}$.
Inf	Infinity.
NaN	Undefined numerical result (not a number).
pi	The number π

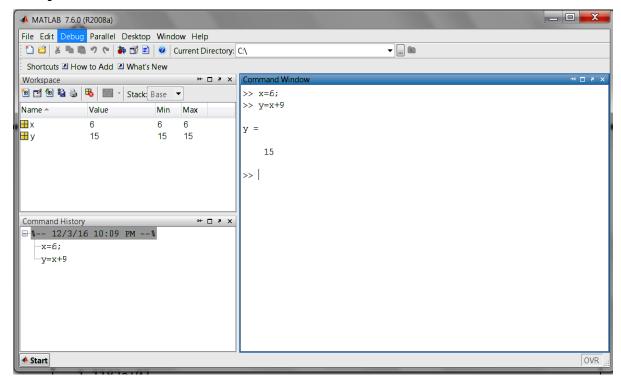
Naming Variables

Variable names consist of a letter followed by any number of letters, digits or underscore. MATLAB is **case-sensitive**.

Variable names can be of any length; however, MATLAB uses only first N characters, where N is given by the function **namelengthmax**.

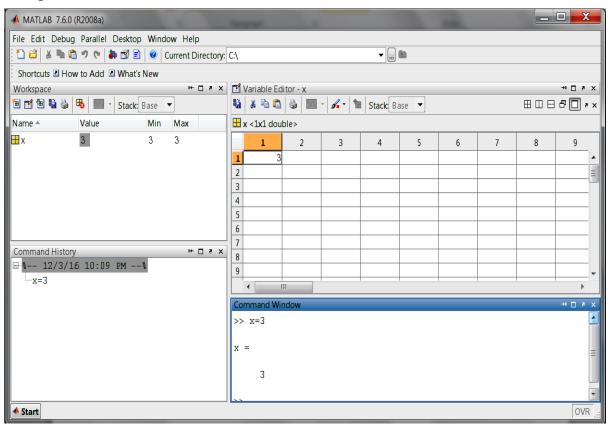

Saving Your Work

The **save** command is used for saving all the variables in the workspace, as a file with .mat extension, in the current directory.

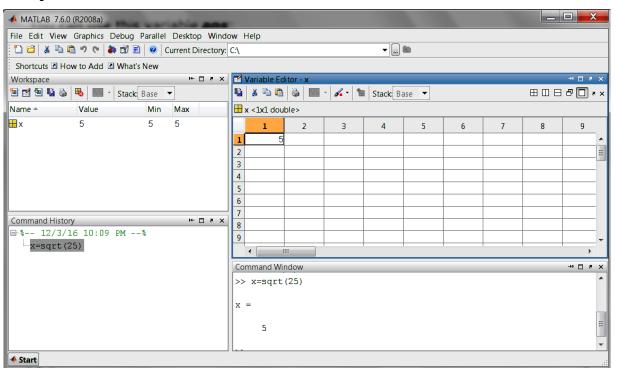

For example, save myfile

You can reload the file anytime later using the **load** command. load myfile

Example 1:



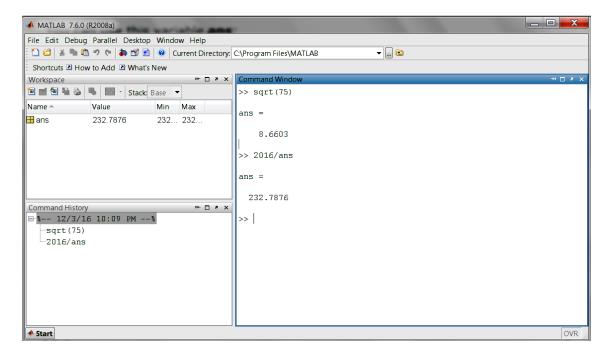
Example 2:


In MATLAB environment, every variable is an array or matrix.

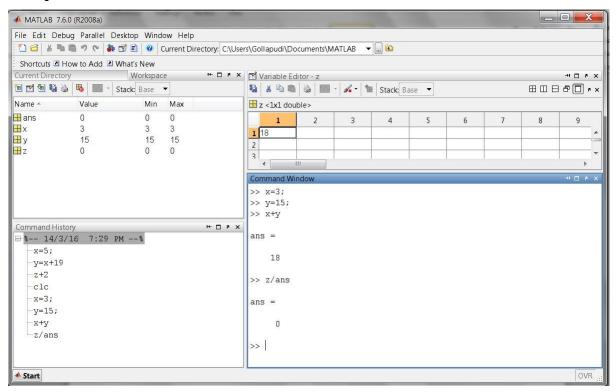
Example 3:

In the above example it creates a 1-by-1 matrix named 'x' and stores the value 3 in its element.

Example 4:



In this example x is to find the square root of 25 it creates a 1-by-1 matrix named 'x' and stores the value 5 in its element


Note:

- Once a variable is entered into the system, you can refer to it later.
- Variables must have values before they are used.
- When you do not specify an output variable, MATLAB uses the variable ans, short for answer, to store the results of your calculation.

Example 6:

Example 7:

In the above example we have multiple assignments

OBJECTIVES

- a. Find the roots of the equations $6x^5 41x^4 + 97x^3 97x^2 + 41x 6$
- b. Find the values of x,y,z of the equations x+y+z=3,x+2y+3z=4,x+4y+9z=6
- c. For $f(x)=8x^8-7x^7+12x^6-5$ x^5+8 x^4+13 $x^3-12x+9$ compute f(2), roots of f(x) and plotfor $0 \le x \le 20$

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM

Roots of the equations $6x^5$ **-41** x^4 **+97** x^3 **-97** x^2 **+41**x**-6**

```
v = [6, -41, 97, -97, 41, -6]; % writing the coefficients s = roots(v); disp('The first root is: '), disp(s(1)); disp('The second root is: '), disp(s(2)); disp('The third root is: '), disp(s(3)); disp('The fourth root is: '), disp(s(4)); disp('The fifth root is: '), disp(s(5));
```

Values of x,y,z of the equations x+y+z=3,x+2y+3z=4,x+4y+9z=6

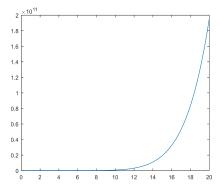
```
A=[1,1,1;1,2,3;1,4,9];
b=[3;4;6];
A\b
```

f(2),roots and plot of f(x)

```
p=[8 -7 12 -5 8 13 0 -12 9];
polyval(p,2)
roots(p)
x=0:0.1:20;
y=polyval(p,x);
plot(x,y)
```

OUTPUT

Roots of the equations $6x^5 - 41x^4 + 97x^3 - 97x^2 + 41x - 6$


The first root is: 3.0000 The second root is:2.0000 The third root is: 1.0000 The fourth root is:0.5000 The fifth root is: 0.3333

Values of x,y,z of the equations x+y+z=3,x+2y+3z=4,x+4y+9z=6

ans = 2 1 0

f(2),roots and plot of f(x)

ans = 1977 ans = -0.2079 + 1.3091i -0.2079 - 1.3091i -0.8053 + 0.4306i -0.8053 - 0.4306i 0.8878 + 0.9318i 0.8878 - 0.9318i 0.5629 + 0.3828i 0.5629 - 0.3828i

OBJECTIVES

- a. Verification of basic properties of limits for the functions f(x) = (3x + 5)/(x 3) and $g(x) = x^2 + 1$ as x endsto 4.
- b. Find the derivative of $(x+2)(x^2+3)$
- c. Calculate the area enclosed between the x-axis, and the curve $y=x^3-2x+5$ and the ordinates x=1 and x=2.

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM_

Properties of limits

```
f = (3*x + 5)/(x-3);

g = x^2 + 1;

11 = limit(f, 4)

12 = limit(g, 4)

1Add = limit(f + g, 4)

1Sub = limit(f - g, 4)

1Mult = limit(f*g, 4)

1Div = limit(f/g, 4)
```

Derivative

```
syms x
f=(x+2)*(x^2+3)
diff(f)
diff(ans)
diff(ans)
diff(ans)
```

Integration

```
syms x
f = x^3 - 2*x +5;
a = int(f, 1, 2)
display('Area: '), disp(double(a));
```

OUTPUT

Properties of limits

11 =17 12 = 17 1Add = 34

lSub = 0lMult = 289

IIVIUII — 20

1Div = 1

Derivative

 $f = (x+2)*(x^2+3)$ ans = $x^2+3+2*(x+2)*x$ ans = 6*x+4ans = 6ans = 0

Integration

a = 23/4

Area:5.7500

OBJECTIVES

a. Find the addition, subtraction and multiplication of matrix

$$A = \begin{bmatrix} 1 & 2 & -9 \\ 2 & -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
$$\begin{bmatrix} 3 & -4 & 3 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 \end{bmatrix}$$

- b. Find the transpose of matrix A= $\begin{bmatrix} 1 & 2 & -9 \\ 2 & -1 & 2 \\ & & & \\ 3 & -4 & 3 \end{bmatrix}$
- c. Find the inverse of matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix}$

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM

Addition, Subtraction and Multiplication of matrix

a=[1 2 -9; 2 -1 2; 3 -4 3];

b=[1 2 3; 4 5 6; 7 8 9];

disp('The matrix a= ');a

disp('The matrix b= ');b

% to find sum of a and b

c=a+b;

disp('The sum of a and b is ');c

% to find difference of a and b

d=a-b

disp('The difference of a and b is ');d

%to find multiplication of a and b

e=a*h·

disp('The product of a and b is ');e

% to find element-by-element multiplication

Transpose of matrix

$$\overline{A=[1,2,-9;2,-1,2;3,-4,3]}$$

B = A.'

Inverse of matrix

a = [123; 234; 125]

inv (a)

OUTPUT

Addition, Subtraction and Multiplication of matrix

The matrix a=

a =

- 1 2 -9
- 2 -1 2
- 3 -4 3

The matrix b=

b =

- 1 2 3
- 4 5 6
- 7 8 9

The sum of a and b is

c =

- 2 4 -6
- 6 4 8
- 10 4 12

The difference of a and b is

d=

- 0 0-12
- -2 -6 -4
- -4 -12 -6

The product of a and b is

e =

- -54 -60 -66
- 12 15 18
- 8 10 12

Transpose of matrix

A =

- 1 2 -9
- 2 -1 2
- 3 -4 3

B =

- 1 2 3
- 2 -1 -4
- -9 2 3

Inverse of matrix

a =

- 1 2 3
- 2 3 4
- 1 2 5

ans =

- -3.5000 2.0000 0.5000
- 3.0000 -1.0000 -1.0000
- -0.5000 0 0.5000

OBJECTIVES

a. Find the rank of matrix A=
$$\begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \\ 13 & 14 & 15 \end{bmatrix}$$

b. Find the row echelon form A=
$$\begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \\ 13 & 14 & 15 \end{bmatrix}$$

c. Find the LU decomposition of the matrix
$$\begin{bmatrix} 2 & -3 & -1 \\ 1/2 & 1 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$$

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM_

Rank of matrix

Row echelon form

LU decomposition

$$\overline{A} = [2 -3 -1; 1/2 1 -1; 0 1 -1]$$

[L, U] = lu(A)

OUTPUT

Rank of matrix

A =

1 2 3
5 6 7
9 10 11
13 14 15

ans = 2

Row echelon form

A =

1 2 3

5 6 7

9 10 11

13 14 15

LU decomposition

 $\begin{array}{ccccccc} L = & & & & & \\ 1.0000 & 0 & 0 & 0 \\ 0.2500 & 1.0000 & 0 \\ 0 & 0.5714 & 1.0000 \end{array}$

 $\begin{array}{c} U = \\ 2.0000 \ \text{--}3.0000 \ \text{--}1.0000 \\ 0 \ 1.7500 \ \text{--}0.7500 \\ 0 \ 0 \ \text{--}0.5714 \end{array}$

OBJECTIVES

- a. Find the characteristics equation of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}$
- b. Find the Eigen values of the matrix $\begin{bmatrix} 1 & 8 & -10 \\ -4 & 2 & 4 \end{bmatrix}$ $\begin{vmatrix} -5 & 2 & 8 \end{vmatrix}$
- c. Find the Eigen vector of the matrix $\begin{bmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM

Characteristics equation

$$A = [1 \ 2 \ 3; 4 \ 5 \ 6; 7 \ 8 \ 0]$$

 $p = poly(A)$

Eigen values

$$A = [1 8 -10; -4 2 4; -5 2 8]$$

 $e = eig(A)$

Eigen vector

$$A=[3,1,1;1,0,2;1,2,0];$$
 [eigenvector, eigenvalue] = eig(A)

OUTPUT_

Characteristics equation

Eigen values

```
A =

1 8-10

-4 2 4

-5 2 8
```

e = 11.6219 -0.3110 + 2.6704i -0.3110 - 2.6704i

Eigen vector

0

0 4.0000

OBJECTIVES

a. solve
$$(D^2 + 5D + 6) y = e^x$$

solve $\iint_{5x^2} x(x^2 + y^2) dx dy$
b.
$$\iint_{0}^{3} \int_{0}^{3-x} \int_{0}^{3-x-y} xyz dx dy dz$$
c. solve $\int_{0}^{3} \int_{0}^{3-x} \int_{0}^{3-x-y} xyz dx dy dz$

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM

Higher order differential

dsolve('D2y+5*Dy+6*y=exp(x)','x')

Double Integration

syms x y firstint=int(x*(x^2+y^2),y,0,x^2) answer=int(firstint,x,0,5)

Triple Integration

syms x y z firstans=int(int(int(x*y*z,z,0,3-x-y),y,0,3-x),x,0,3)

OUTPUT

Higher order differential

ans = $\exp(-2x)*C2+\exp(-3x)*C1+1/12*\exp(x)$

Double Integration

firstint = $1/3*x^7+x^5$ answer = 453125/24

Triple Integration

firstans = 81/80

OBJECTIVES

- a. Find the lagrange's polynomial for the following data (0,2),(1,3),(2,12),(5,147)
- b. Fit a straight line for the following data (0,12),(5,15),(10,17),(15,22),(20,24),(25,30)
- c. Fit a polynomial curve for the following data (0,1),(1,1.8),(2,1.3),(3,2.5),(4,6.3)

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM

Lagrange's polynomial

```
x=[0 1 2 5];
y=[2 3 12 147];
disp([x;y])
v=vander(x)
c=v\y'
```

Straight Line

```
x=[0 5 10 15 20 25];
y=[12 15 17 22 24 30];
disp([x;y])
p=polyfit(x,y,1);
disp(p);
```

Polynomial curve

```
x=[0 1 2 3 4];
y=[1 1.8 1.3 2.5 6.3];
disp([x;y])
p=polyfit(x,y,2);
disp(p);
```

OUTPUT

Lagrange's polynomial

0	1	2	5	
2	3	12	147	
y = 0	0	0	1	
1	1	1	1	
8	4	2	1	
125	25	5	1	

c = 1.0000

1.0000

-1.0000

2.0000

<u>Straight Line</u> 0 5 10 15 20 25 12 15 17 22 24 30

0.6971 11.2857

Polynomial curve

0 1.0000 2.0000 3.0000 4.0000

 $1.0000 \quad 1.8000 \quad 1.3000 \quad 2.5000 \quad 6.3000$

0.5500 -1.0700 1.4200

OBJECTIVES

write a program to find the root of the equation by using x^3-5x+3

- a. Bisection Method
- b. Regula Falsi
- c. Newton Raphson Method

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM_

Bisection Method

```
f=@(x) x^3-5*x+3;
display('Equation is x^3-5*x+3=0')
i=1;
while(i)
   xl=input('Enter lower value:');
   xu=input('Enter upper value: ');
   e=input('Enter accuracy: ');
  if f(x1)*f(xu)<0
    i=0;
  else
     warning('Enter proper range');
  end
end
if f(xl) < 0
  xn=x1;
  xp=xu;
else
  xn=xu;
  xp=x1;
end
while (abs(xn-xp)>e)
  xm=(xn+xp)/2;
  if f(xm)<0
    xn=xm;
  else
     xp=xm;
  end
end
Root=xm
```

```
Regula Falsi
f=@(x) x^3-5*x+3;
display('Equation is x^3-5*x+3=0')
i=1;
while(i)
  xl=input('Enter lower value:');
  xu=input('Enter upper value: ');
  e=input('Enter accuracy: ');
  if f(xl)*f(xu)<0
    i=0;
  else
     warning('Enter proper range');
  end
end
if f(x1) < 0
  xn=x1;
  xp=xu;
else
  xn=xu;
  xp=x1;
end
xm=x1;
while (abs(f(xm))>e)
 xm = (xn*f(xp)-xp*f(xn))/(f(xp)-f(xn));
  if f(xm)<0
     xn=xm;
  else
     xp=xm;
  end
end
Root=xm
Newton Raphson Method
syms x
f = x^3-5*x+3;
fdash=diff(f);
disp('The equation is: '),disp(f);
disp('The derivative of equation is: '),disp(fdash);
y=inline(f);
dy=inline(fdash);
x0=input('Enter approximate root: ');
e=input('Enter the accuracy: ');
while abs(feval(y,x0))>e
h=-feval(y,x0)/feval(dy,x0);
x0=x0+h;
end
root=x0
OUTPUT
Bisection Method
Equation is x^3-5*x+3=0
Enter lower value:1
```

Enter upper value: 2 Enter accuracy: 0.0001

Root = 1.8343

Regula Falsi

Equation is $x^3-5*x+3=0$ Enter lower value:1 Enter upper value: 2 Enter accuracy: 0.0001 Root =1.8342

Newton Raphson Method The equation is: $x^3-5*x+3$

The derivative of equation is: $3*x^2-5$

Enter approximate root: 1.5 Enter the accuracy: 0.0001

root = 1.8343

OBJECTIVES

1.2

- a. Evaluate $\int_{0}^{\infty} e^{x}$ by using trapezoidal and Simpson's method
- b. Evaluate $y^1=x+y$, y(0)=1 of size h=0.2 by using Euler's and Runge-Kutta method

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM

Trapezoidal Method:

x=0:0.2:1.2;

y=exp(x);

trapz(x,y)

Simpson's Method:

quad('exp(x)', 0, 1.2)

Euler's and Runge-Kutta method

f=@(x,y)(x+y);

[x,y]=ode23(f,[0:0.2:1],1)

[x,y] = ode45(f,[0:0.2:1],1)

OUTPUT

Trapezoidal Method:

ans =2.3278

Simpson's Method:

ans = 2.3201

Euler's method

 $\mathbf{x} = \mathbf{0}$

0.2000

0.4000

0.6000

0.8000

1.0000

y = 1.0000

1.2428

1.5836

2.0442

2.6510

3.4364

Runge-Kutta method

 $\overline{\mathbf{x} = \mathbf{0}}$

0.2000

0.4000

0.6000

0.8000

1.0000

y = 1.0000

1.2428

1.5836

2.0442

2.6511

3.4366

OBJECTIVES

- a. Evaluate $\iint (3x^2 8y^2) dx + (4y 6xy) dy$ Where region is bounded by $y = x^2$, $y = \sqrt{x}$
- b. Plot the surface for $f = (2 \cos \pi x)e^{y}$
- c. Plot the surface for 2+cost

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

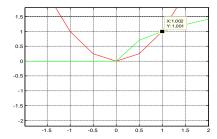
PROGRAM

Line Integral

```
clear all
clc
syms x y
f=[3*x.^2-8*y.^2 4*y-6*x*y];
disp('Along the curve y=x.^2')
a=subs(f,y,x.^2);
b = diff(x.^2,x);
c=b*a(2);
d=int(a(1),x,0,1);
e=int(c,x,0,1);
u=d+e
disp('Along the curve y=sqrt(x)')
p=subs(f,y,sqrt(x));
q = diff(sqrt(x),x);
r=q*p(2);
s=int(p(1),x,1,0);
t = int(r, x, 1, 0);
v=s+t
I=u+v
x=-2:0.5:2;
y2=sqrt(x);
y1=x.^2;
plot(x,y1,'r', x,y2,'g');
grid on
```

Surface

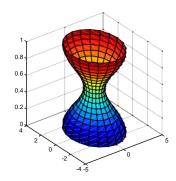
```
x=-1:.1:1;y=0:.1:1.5;
[X,Y]=meshgrid(x,y);
F=(2-cos(pi*X)).*exp(Y);
```


surf(X,Y,F);xlabel('x'); ylabel('y');

 $\frac{\textbf{Volume}}{t = 0:pi/10:2*pi;}$ figure $[X,Y,Z] = \text{cylinder}(2+\cos(t));$ surf(X,Y,Z)axis square

OUTPUT_

Line Integral


Along the curve $y=x.^2$ u = -1Along the curve y=sqrt(x)v = 5/2I = 3/2

Surface

Volume

OBJECTIVES

a. Find grad f where $f=x^3+y^3+3xyz$ at (1,1,1)If $\overline{f}=xy^2i+2x^2yzj-3yz^2k$ find div \overline{f} at the point (1,-1,1)c. If $\overline{f}=xy^2i+2x^2yzj-3yz^2k$ find curl \overline{f} at the point (1,-1,1)

SOFTWARE REQUIRED

- 1. MATLAB R2013a.
- 2. Windows 7/XP SP2.

PROCEDURE

- 1. Open MATLAB
- 2. Open new M-file
- 3. Type the program
- 4. Save in current directory
- 5. Compile and Run the program
- 6. For the output see command window\ Figure window

PROGRAM

Gradient

```
syms x y z
f=x.^3+y.^3+3*x*y*z;
p = diff(f,x)
q = diff(f,y)
r = diff(f,z)
w=[p q r]
subs(w,{x,y,z},{1,1,1})
```

Divergent

```
syms x y z f=[x*y.^2 2*x.^2*y*z - 3*y*z.^2]; p=diff(f(1),x) q=diff(f(2),y) r=diff(f(3),z) w=p+q+r subs(w,{x,y,z},{1,-1,1}) \underline{Curl} syms x y z f=[x*y.^2 2*x.^2*y*z - 3*y*z.^2]; p=diff(f(3),y)-diff(f(2),z) q=diff(f(2),x)-diff(f(1),y) w=[p q r] subs(w,{x,y,z},{1,-1,1})
```

b.

OUTPUT

Gradient

$$\begin{array}{lll} p & = 3*x^2 + 3*y*z \\ q & = 3*y^2 + 3*x*z \\ r & = 3*x*y \\ w & = [& 3*x^2 + 3*y*z, & 3*y^2 + 3*x*z, & 3*x*y] \\ ans & = 6 6 & 3 \end{array}$$

Divergent

Curl

$$\begin{array}{l} p = -3*z^2 - 2*x^2 + y \\ q = 0 \\ r = 4*x*y*z - 2*x*y \\ w = [\ -3*z^2 - 2*x^2 + y, \\ ans = -1 \ 0 \ -2 \end{array} \qquad 0, \ 4*x*y*z - 2*x*y]$$