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Introduction to DSP architectures and programming

Digital signal processingalgorithms typically require a large number of

mathematical operations to be performed quickly mpeatedly on a series of data
samples. Signals (perhaps from audio or video sshswe constantly converted
from analog to digital, manipulated digitally, atften converted back to analog
form. Many DSP applications have constraintdatancy that is, for the system to

work, the DSP operation must be completed withimesdixed time, and deferred

(or batch) processing is not viable.

Most general-purpose microprocessors and operaystems can execute DSP
algorithms successfully, but are not suitable fee in portable devices such as
mobile phones and PDAs because of power efficientstraints A specialized
DSP, however, will tend to provide a lower-costusioh, with better performance,
lower latency, and no requirements for specialeauling or large batteries.

Such performance improvements have led to the dotton of digital signal
processing in commerciatommunications satellitesvhere hundreds or even
thousands of analog filters, switches, frequenayeders and so on are required
to receive and process thelinked signals and ready them fdiownlinking and
can be replaced with specialised DSPs with sigaificbenefits to the satellites'
weight, power consumption, complexity/cost of caomstion, reliability and
flexibility of operation. For example, the SES-12daBES-14 satellites from
operatorSESlaunched in 2018, were both built Byrbus Defence and Spaeéth
25% of capacity using DSP.

By the standards of general-purpose processors, iDSRiction sets are often

highly irregular; while traditional instruction seare made up of more general
instructions that allow them to perform a wideriggr of operations, instruction

sets optimized for digital signal processing camtamstructions for common

mathematical operations that occur frequently ifP[@8lculations.

Following operations must be known in understandeydsp

I nstruction sets

multiply—accumulate$MACSs, includingfused multiply—addFMA) operations
o used extensively in all kinds afatrix operations
= convolutionfor filtering

« dot product



= polynomial evaluation
o Fundamental DSP algorithms depend heavily on myttgzcumulate
performance
« FIR filters
« Fast Fourier transforifFT)

Analog-to-Digital Converter (ADC)
Real signals (e.g., a voltage measured with a theoople or a speech signal
recorded with a microphone) are analog quantitias;ing continuously with time.

Digital format offers several advantages: digitgihal processing, storage, use of
computers, robust transmission, etc.

* An ADC (Analog-to-Digital Converter) is used to a@mnt an analog signal to the
digital format.

Analog-to-Digital converters (ADC) translate analsmnals, real world signals
like temperature, pressure, voltage, current, digta or light intensity, into a
digital representation of that signal. This digitspresentation can then be
processed, manipulated, computed, transmittecboecst
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Figure 20.1 Analog to Digital conversion

In many cases, the analog to digital conversiorcgss is just one step within a
larger measurement and control loop where digitidath is processed and then
reconverted back to analog signals to drive extdraasducers. These transducers
can include things like motors, heaters and acoustiers like loudspeakers. The
performance required of the ADC will reflect thafpemance goals of the



measurement and control loop. ADC performance neeitlsalso reflect the
capabilities and requirements of the other signatgssing elements in the lo
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An ADC samples an analog waveform at uniform tim&ernvals and assigns
digital value to each sample. The digital value apgp®n the convelrr’s output in
a binary coded format. The value is obtained byding the sampled analog ing
voltage by the reference voltage and them mulmgyby the number of digit:
codes. The resolution of converter is set by thabwr of binary bits in the tput

code.
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An ADC carries out two processes, sampling and tgpetion. The ADC
representsn analog signal, which has infinite resolutionaadigital code that he
finite resolution. The ADC produces 2N digital vedbuwhere N represents |
number of binary output bits. The analog input sigwdl fall between the
guantization levels becee the converter has finite resolution resulting ain
inherent uncertainty or quantization error. Thatoemetermines the maximu

dynamic range of theonvertel
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Figure 20.4 Quantization Proc

The sampling process represents a continuous time domain sigithl values
measured at discrete and uniform time intervalsis Tgrocess determines t
maximum bandwidth of the sampled signal in accoedawmith the Nyquis Theory.
This theory states that the signal frequency must be less than or equal to one

half the sampling frequency to prevent aliasing. Aliasing is a condition in whic
frequency signals outside the desired signal baiilfj through the samplin
process,appear within the bandwidth of interest. Howevéis taliasing proces
can be exploited in communications systems desgyrddwr-convert a high
frequency signal to a lower frequency. This techaiguknown as und-sampling.
A criterion for undersamplng is that the ADC has sufficient input bandwidtid

dynamic range to acquire the highest frequencyasigf interest.
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Figure 20.5 Sampling Proct

Sampling and quantization are important conceptsalme they establish t
performance limits of andea ADC. In an ideal ADCthe code transitions &



exactly 1 least significant bit (LSB) apart. So, fom M-bit ADC, there are 2N\
codesand 1 LSB = FS/2N, where FS is the -scale analog input voltag
However, ADC operation in the real world is alséeafed by no-ideal effects,
which produce errors beyond those dictated by avewveesolution and samg
rate. These errors are reted in a number of AC and DC performal
specifications associated with AD
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Figure 20.6 Transfer Function for an Ideal A

Decimation — Reduce the sampling rate of a disc-time signal— Low sampling
rate reduces storage and computation rements. 4 nterpolation — Increase the
sampling rate of a discretane signal. -Higher sampling rate preserves fide

Moving averages smooth the price data to form adtfellowing indicator. They
do not predict price direction, but rather de the current direction, though th

lag due to being based on past prices. Despite niosing averages help smoc

price action and filter out the noise. They alsarfdhe building blocks for mar

other technical indicators and overlays, suctBollinger Band, MACD andthe

McClellan Oscillator The two most popular types of moving averages
the Simple Moving Average (SMA) and the Exponential Moving Average

(EMA). These moving averages can be used to identifyliteetion of the trend
or define potential support and resiste levels.

Here's a chart with both an SMA and an EMA ¢
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A simple moving average is formed by computing the average price of a
security over a specific number of periods. Most moving averages are based on
closing prices; for example, a 5-day simple mowawgrage is the five-day sum of
closing prices divided by five. As its name impJiasmoving average is an average
that moves. Old data is dropped as new data becawai$able, causing the
average to move along the time scale. The examptevighows a 5-day moving
average evolving over three days.

Simple Moving Average Calculation

Daily Closing Prices: 11,12,13,14,15,16,17

First day of 5-day SMA: (11 + 12 + 13 + 14 + 1) # 13

Second day of 5-day SMA: (12 + 13 + 14 + 15 + 1B/ 14

Third day of 5-day SMA: (13 + 14 + 15+ 16 + 17)#35

The first day of the moving average simply covess It five days. The second
day of the moving average drops the first data tpgitt) and adds the new data
point (16). The third day of the moving average margs by dropping the first



data point (12) and adding the new data point (k¥the example above, prices
gradually increase from 11 to 17 over a total aesedays. Notice that the moving
average also rises from 13 to 15 over a three-dégulation period. Also, notice
that each moving average value is just below tls¢ paice. For example, the
moving average for day one equals 13 and the tast 5 15. Prices the prior four
days were lower and this causes the moving avdoalgg.

Periodic Signals

A periodic signal is one that repeats the sequehoslues exactly after a fixed
length of time, known as the period. In mathematieans a signal x(t) is periodic
if there is a number T such that for all t Equatiotds the following.

X(t)=x(t+T)

The smallest positive number T that satisfies Equatibove is the period and it
defines the duration of one complete cycle. The dnmehtal frequency of a
periodic signal is given by Equation below

f=1/T

It is important to distinguish between the realnsig and the quantitative
representation, which is necessarily an approxonafihe amount of error in the
approximation depends on the complexity of the aigwith simplewaveforms
such as the sinusoid, having less error than convpereforms.

A harmonic is a signal or wave whogequencyis an integral (whole-number)
multiple of the frequency of some reference sigmalave. The term can also refer
to the ratio of the frequency of such a signal @vevto the frequency of the
reference signal or wave.

Let f represent the main, or fundamental, frequency dlmnating current AC )
signal, electromagnetic field or sound wave. This frequency, usually expidsse
in hertz, is the frequency at which most of the energyoistained, or at which the
signal is defined to occur. If the signad displayed on an oscilloscope,
thewaveformwill appear to repeat at a rate correspondingHa.




For a signal whose fundamental frequencyf is the second harmonic has a
frequency Z, the third harmonic has a frequency 8f, and so on.
Let w represent thevavelengthof the signal or wave in a specified medium. The
second harmonic has a wavelengthwof2, the third harmonic has a wavelength
of w /3, and so on. Signals occurring at frequencieafof4f, 6f, etc. are called
even harmonics; the signals at frequencies of, 5 f, 7 f, etc. are called odd
harmonics. A signal can, in theory, have infinitelgny harmonics.

Nearly all signals contain energy at harmonic fergies, in addition to the energy
at the fundamental frequency. If all the energyairsignal is contained at the
fundamental frequency, then that signal is a pede® wave. If the signal is not a
perfect sine wave, then some energy is containedhé& harmonics. Some
waveforms contain large amounts of energy at hamrfoequencies. Examples are
square waves, sawtooth waves, and triangular waves.

IR vsFIR Filters

lIR filters are difficult to control and have norgiaular phase, whereas FIR filters
make a linear phase always possible. IR can b&ables whereas FIR is always
stable. IR, when compared to FIR, can have limagdes, but FIR has no limited
cycles. IIR is derived from analog, whereas FIR hasanalog history. IR filters

make polyphase implementation possible, whereac&iRalways be made casual.

FIR filters are helpful to achieve fractional cardt delays. #MAD stands for a
number of multiplications and additions, and isduas a criterion for an IIR and
FIR filter comparison. IIR filters require more #NDAwhen compared to FIR,
because FIR is of a higherderin comparison to IIR, which is of lower order, and

uses polyphase structures.



FIR filters are dependent upon linear-phase chariatts, whereas IIR filters are
used for applications which are notedin FIR's delay characteristics
IS better, but they require more memory. On the ottard, IIR filters are
dependent on both i/p and o/p, but FIR is dependeon i/p only. IIR filters
consist of zeros and poles, and require less methary FIR filters, whereas FIR
only consists of zeros. IIR filters can becomeidiifit to implement, and also delay
and distort adjustments can alter the poles & zgreehich make the filters
unstable, whereas FIR filters remain stable. Flierg are used for tapping of a
higher-order, and IIR filters are better for tagpof lower-orders, since IIR filters

may become unstable with tapping higher-orders.

Analog to Digital Converter

From the name itself it is clear that it is a cameewhich converts the analog
(continuously variable) signal to digital signal. i§his really an electronic
which directly converts the continuous form of sijto discrete
form. It can be expressed as A/D or A-to-D or A-DA®C. The input (analog) to
this system can have any value in a range andietly measured. But for output
(digital) of an N-bit A/D converter, it should hawmnly 2" discrete values. This
A/D converter is a linkage between the analog (linear) worldrahsducers and
discreet world of processing the signal and hagdine data. The digital to analog
converter (DAC) carry out the inverse function ¢fetADC. The schematic
representation of ADC is shown below.

Xin ADC —  Xout

Figure 1



ADC Process

There are mainly two steps involves in the procés®wversion. They are

Sampling and Holding
Quantizing and Encoding

The whole ADC conversion process is shown in figlure
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Figure 2

Sampling and Holding

In the process of Sample and hold (S/H), the caotis signal will gets sampled
and freeze (hold) the value at a steady level fpardicular least period of time. It
is done to remove variations in input signal whietm alter the conversion process
and thereby increases the accuracy. The minimunplgagnrate has to be two
times the maximum data frequency of the input digna

Quantizing and Encoding

For understanding quantizing, we can first go thtothe term Resolution used in
ADC. It is the smallest variation in analog sigti@t will result in a variation in
the digital output. This actuallyrepresents the quantization error.

V
Resolution, AV = —

oN
\% — Reference voltage range
2N — Number of states

N — Number of bits in digital output



Quantizing: It is the process in which the refeeenignal is partitioned into several
discrete quanta and then the input signal is mdteh#h the correct quantum.

Encoding: Here; for each quantum, a unique digibalecwill be assigned and after
that the input signal is allocated with this digitade. The process of quantizing
and encoding is demonstrated in the table below.

Analog Digital
signal oS P

L5 T — wa—7v — 111

(=] — sA—=5\w — = 110
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o P on=0w —= 000

From the above table we can observe that only agealdvalue is used to

represent the whole range \af in an interval. Thus, an error will occur and it
is called quantization error. This is the noiseradticed by the process of
1, oy
+ —AV =4 0.5V

quantization. Here the maximum quantization ers.. .2

| mprovement of Accuracy in ADC

Two important methods are used for improving thausaxy in ADC. They are by
increasing the resolution and by increasing thepdiam rate. This is shown in



figure

below (figure 3).
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Types of Analog to Digital Converter

Successive Approximation ADC: This converter compares the input signal
with the output of an internal DAC at each suceesstep. It is the most
expensive type.

Dual Slope ADC: It have high accuracy but very slow in operation.

Pipeline ADC: It is same as that of two step Flash ADC.

Delta-Sigma ADC: It has high resolution but slow due to over sangplin
Flash ADC: It is the fastest ADC but very expensive.

Other: Staircase ramp, Voltage-to-Frequency, Switchedatpatracking,
Charge balancing, and resolver.

Application of ADC

Used together with the

Used in computer to convert the analog signal gatali signal.
Used in cell phones.

Used in microcontrollers.

Used in digital signal processing.

Used in

Used in scientific instruments.

Used in music reproduction technology etc.




Digital to Analog Converter or DAC

is extensively used as main building blockdifital to analog convertor.
Digital to analog convertor is an electronics device in form of IC, which cortse
digital signal to its equivalent analog signal. TW&C can be realized in many ways.
One of the populadigital to analog convertor circuit is binary weighted ladder.

This is basically & designed with suitable ,sas shown
below.

W1 A R}

Now, applying at node 1 of the above circuit, we get,
) U Ug gy Y

=+ =+ ==
R, R, HR; R, R;

N Ry By Ry Ry .
= —1y = R, N R, Ug + R U3 R, Uy ()
Before going through the above circuit difgital to analog convertor, Let us put
some suitable values of differemnt connected in the circuiBuch as, R= 10KQ,
R. = 10KQ, R, = 20KQ, R; = 40KQ and R= 80KQ.
Putting these values in equation (1) we get,
— vy = vy + 05w 4+ 0.25v3 + 0.125v,
Now, let us also apply at input terminals either 0 or 1 volt. Puttingvdlt at all
inputs,(i,e. v = 0, »w = 0, w = 0 and v = 0) we get,
—vy =0+0.5x0+0.25 x 0+ 0.125 x 0
=y =0w

So, for digital input 0000, we get analog outpwl. Putting, 1V at last input only,
(,e.vv=0,%w=0,w=0andv=1V), we get,

—vp =04+0.5 x0+0.25 x 0+0.125 x 1
= g = —0.125 volt



Similarly, forv.=0,%=0,%x=1,%=0
—vp=04+05x0+0.25x1+0.125 x0
= yy = —0.25 volt
For,v=0,v=0,vxw=1,vu=1
—vp=04+05x04+0.25 x1+0.125 x 1
= vy = —0.375 volt

In this way the inputs and corresponding outputskEarepresented in a table as

shown below.

Binary Input [v Vv, V3 V4] Decimal Value Output(-w)
0000 0 0
0001 1 0.125
0010 2 0.25
0011 3 0.375
0100 4 0.5
0101 5 0.625
0110 6 0.75
0111 7 0.875
1000 8 1.0
1001 9 1.125
1010 10 1.25




1011 11 1.375

1100 12 1.5

1101 13 1.625

1110 14 1.75

1111 15 1.875

So, for each decimal number there is one uniqupubu level. From the table

it is also seen that, form 0 to 15, for each in@etrthere is an increase of output
level by 0.125 volt.

So, the output is analog and it is linearly projporl the decimal equivalent of digital
inputs. The above example was of a fourDXC. A four bit DAC can be represented
as shown below.

Digital *

Inputs
(0000-1111) *
L J

4 Bit

DAC * Analog Output

Sampling Theory

The signals we use in the real world, such as oigeg, are called "analog" signals.
To process these signals in computers, we neeahiged the signals to "digital”
form. While an analog signal is continuous in biotie and amplitude, a digital
signal is discrete in both time and amplitude. dowert a signal from continuous
time to discrete time, a process called samplingesl. The value of the signal is
measured at certain intervals in time. Each measemeis referred to as a sample.
(The analog signal is also quantized in amplitie that process is ignored in this
demonstration. See the Analog to Digital Convergiage for more on that.)

When the continuous analog signal is sampled edcquéncy F, the resulting discrete



signal has more frequency components than didrtakg signal. To be precise, the
frequency components of the analog signal are teged the sample rate. That is, in
the discrete frequency response they are seepiabtiginal position, and are also
seen centered around +/- F, and around +/- 2F, etc.

How many samples are necessary to ensure we aeryrgy the information
contained in the signal? If the signal containdtirgquency components, we will
need to sample at a higher rate to avoid losingrimétion that is in the signal. In
general, to preserve the full information in thgnsll, it is necessary to sample at
twice the maximum frequency of the signal. Thiknswn as the Nyquist rate. The
Sampling Theorem states that a signal can be gxagtoduced if it is sampled at a
frequency F, where F is greater than twice the mari frequency in the signal.

What happens if we sample the signal at a frequératyis lower that the Nyquist
rate? When the signal is converted back into ailmootis time signal, it will exhibit a
phenomenon callealiasing. Aliasing is the presence of unwanted componentise
reconstructed signal. These components were eeept when the original signal
was sampled. In addition, some of the frequenciglka original signal may be lost in
the reconstructed signal. Aliasing occurs becaigsgbkfrequencies can overlap if the
sampling frequency is too low. Frequencies "f@ddund half the sampling
frequency - which is why this frequency is ofteferead to as the folding frequency.

Sometimes the highest frequency components ofraalsage simply noise, or do not
contain useful information. To prevent aliasinglodse frequencies, we can filter out
these components before sampling the signal. Becaasare filtering out high
frequency components and letting lower frequenceymanents through, this is known
as low-pass filtering.

Demonstration of Sampling

The original signal in the applet below is composethree sinusoid functions, each
with a different frequency and amplitude. The egbmere has the frequencies 28
Hz, 84 Hz, and 140 Hz. Use the filtering controfitier out the higher frequency
components. This filter is an ideal low-pass fili@eaning that it exactly preserves
any frequencies below the cutoff frequency and detafy attenuates any frequencies



above the cutoff frequency.

Notice that if you leave all the components in dhiginal signal and select a low
sampling frequency, aliasing will occur. This aingswill result in the reconstructed
signal not matching the original signal. However gan try to limit the amount of
aliasing by filtering out the higher frequencieghe signal. Also important to note is
that once you are sampling at a rate above the isltycate, further increases in the
sampling frequency do not improve the quality & teconstructed signal. This is
true because of the ideal low-pass filter. In-weatld applications, sampling at
higher frequencies results in better reconstrusigals. However, higher sampling
frequencies require faster converters and moragorTherefore, engineers must
weigh the advantages and disadvantages in eacicatppi, and be aware of the
tradeoffs involved.

The importance of frequency domain plots in sigaralysis cannot be understated.
The three plots on the right side of the demonstmaire all Fourier transform plots.
It is easy to see the effects of changing the saglequency by looking at these
transform plots. As the sampling frequency decrgabe signal separation also
decreases. When the sampling frequency drops keeWyquist rate, the
frequencies will crossover and cause aliasing.



