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Introduction to DSP architectures and programming 
 

Digital signal processing algorithms typically require a large number of 
mathematical operations to be performed quickly and repeatedly on a series of data 
samples. Signals (perhaps from audio or video sensors) are constantly converted 
from analog to digital, manipulated digitally, and then converted back to analog 
form. Many DSP applications have constraints on latency; that is, for the system to 
work, the DSP operation must be completed within some fixed time, and deferred 
(or batch) processing is not viable. 

Most general-purpose microprocessors and operating systems can execute DSP 
algorithms successfully, but are not suitable for use in portable devices such as 
mobile phones and PDAs because of power efficiency constraints.[5] A specialized 
DSP, however, will tend to provide a lower-cost solution, with better performance, 
lower latency, and no requirements for specialised cooling or large batteries. 

Such performance improvements have led to the introduction of digital signal 
processing in commercial communications satellites where hundreds or even 
thousands of analog filters, switches, frequency converters and so on are required  
to receive and process the uplinked signals and ready them for downlinking, and 
can be replaced with specialised DSPs with significant benefits to the satellites' 
weight, power consumption, complexity/cost of construction, reliability and 
flexibility of operation. For example, the SES-12 and SES-14 satellites from 
operator SES launched in 2018, were both built by Airbus Defence and Space with 
25% of capacity using DSP. 

By the standards of general-purpose processors, DSP instruction sets are often 
highly irregular; while traditional instruction sets are made up of more general 
instructions that allow them to perform a wider variety of operations, instruction 
sets optimized for digital signal processing contain instructions for common 
mathematical operations that occur frequently in DSP calculations. 

Following operations must be known in understanding the dsp 

Instruction sets 
 

• multiply–accumulates (MACs, including fused multiply–add, FMA) operations 
o used extensively in all kinds of matrix operations 

� convolution for filtering 
� dot product 



 
 

� polynomial evaluation 
o Fundamental DSP algorithms depend heavily on multiply–accumulate 

performance 
� FIR filters 
� Fast Fourier transform (FFT) 

 

 
Analog-to-Digital Converter (ADC) 
Real signals (e.g., a voltage measured with a thermocouple or a speech signal 
recorded with a microphone) are analog quantities, varying continuously with time. 

Digital format offers several advantages: digital signal processing, storage, use of 
computers, robust transmission, etc. 

*  An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the 
digital format. 

Analog-to-Digital converters (ADC) translate analog signals, real world signals  
like temperature, pressure, voltage, current, distance, or light intensity, into a  
digital representation of that signal. This digital representation can then be 
processed, manipulated, computed, transmitted or stored. 

 
 

 
Figure 20.1 Analog to Digital conversion 

In many cases, the analog to digital conversion process is just one step within a 
larger measurement and control loop where digitized data is processed and then 
reconverted back to analog signals to drive external transducers. These transducers 
can include things like motors, heaters and acoustic divers like loudspeakers. The 
performance required of the ADC will reflect the performance goals of the 



 
 

measurement and control loop. ADC performance needs will also 
capabilities and requirements of the other signal processing elements in the loop.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

An ADC samples an analog waveform at uniform time intervals and assigns a 
digital value to each sample. The digital value appears on the converte
a binary coded format. The value is obtained by dividing the sampled analog input 
voltage by the reference voltage and them multiplying by the number of digital 
codes. The resolution of converter is set by the number of binary bits in the ou
code. 

 

 

Figure 20.3 Digital output code

An ADC carries out two processes, sampling and quantization. The ADC  
represents an analog signal, which has infinite resolution, as a digital code that has 
finite resolution. The ADC produces 2N digital values where N represents the 
number of binary output bits. The analog input signal will fall between the 
quantization levels becaus
inherent uncertainty or quantization error. That error determines the maximum 
dynamic range of the converter.
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Figure 20.4 Quantization Process

The sampling process represents a continuous time domain signal with values 
measured at discrete and uniform time intervals. This process determines the 
maximum bandwidth of the sampled signal in accordance with the Nyquist
This theory states that the signal frequency must be less than or equal to one 
half the sampling frequency to prevent aliasing
frequency signals outside the desired signal band will, through the sampling 
process, appear within the bandwidth of interest. However, this aliasing process  
can be exploited in communications systems design to down
frequency signal to a lower frequency. This technique is known as under
A criterion for under-sampli
dynamic range to acquire the highest frequency signal of

 

Figure 20.5 Sampling Process

Sampling and quantization are important concepts because they establish the 
performance limits of an ideal
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sampling is that the ADC has sufficient input bandwidth and 
dynamic range to acquire the highest frequency signal of interest. 

Figure 20.5 Sampling Process 

Sampling and quantization are important concepts because they establish the 
deal ADC. In an ideal ADC, the code transitions are

 

process represents a continuous time domain signal with values 
measured at discrete and uniform time intervals. This process determines the 
maximum bandwidth of the sampled signal in accordance with the Nyquist Theory. 
This theory states that the signal frequency must be less than or equal to one 

. Aliasing is a condition in which 
frequency signals outside the desired signal band will, through the sampling 

appear within the bandwidth of interest. However, this aliasing process  
can be exploited in communications systems design to down-convert a high 
frequency signal to a lower frequency. This technique is known as under-sampling. 
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exactly 1 least significant bit (LSB) apart. So, for an N
codes and 1 LSB = FS/2N, where FS is the full
However, ADC operation in the real world is also affected by non
which produce errors beyond those dictated by converter resolution and sample 
rate. These errors are reflec
specifications associated with ADCs.

 

Figure 20.6 Transfer Function for an Ideal ADC
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Moving averages smooth the price data to form a trend following indicator. They  
do not predict price direction, but rather define
lag due to being based on past prices. Despite this, moving averages help smooth 
price action and filter out the noise. They also form the building blocks for many 
other technical indicators and overlays, such as 
McClellan  Oscillator.  The  two  
the Simple Moving Average (SMA) 
(EMA). These moving averages can be used to identify the direction of the trend   
or define potential support and resistance

Here's a chart with both an SMA and an EMA on it:

exactly 1 least significant bit (LSB) apart. So, for an N-bit ADC, there are 2N  
and 1 LSB = FS/2N, where FS is the full-scale analog input voltage. 

However, ADC operation in the real world is also affected by non
which produce errors beyond those dictated by converter resolution and sample 
rate. These errors are reflected in a number of AC and DC performance 
specifications associated with ADCs. 

Figure 20.6 Transfer Function for an Ideal ADC 

Reduce the sampling rate of a discrete-time signal. 
rate reduces storage and computation requirements. • Interpolation 

-time signal. – Higher sampling rate preserves fidelity.

Moving averages smooth the price data to form a trend following indicator. They  
do not predict price direction, but rather define the current direction, though they 
lag due to being based on past prices. Despite this, moving averages help smooth 
price action and filter out the noise. They also form the building blocks for many 
other technical indicators and overlays, such as Bollinger Bands

.  The  two  most  popular  types  of  moving  averages  are  
Simple Moving Average (SMA) and the Exponential Moving Average 

. These moving averages can be used to identify the direction of the trend   
or define potential support and resistance levels. 

Here's a chart with both an SMA and an EMA on it: 

bit ADC, there are 2N  
scale analog input voltage. 

However, ADC operation in the real world is also affected by non-ideal effects, 
which produce errors beyond those dictated by converter resolution and sample 

ted in a number of AC and DC performance 

time signal. – Low sampling 
Interpolation – Increase the 

Higher sampling rate preserves fidelity. 
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Daily Closing Prices: 11,12,13,14,15,16,17 
 

First day of 5-day SMA: (11 + 12 + 13 + 14 + 15) / 5 = 13 
 

Second day of 5-day SMA: (12 + 13 + 14 + 15 + 16) / 5 = 14 
 

Third day of 5-day SMA: (13 + 14 + 15 + 16 + 17) / 5 = 15 

 
 

 
 

Simple Moving Average Calculation 
 

A simple moving average is formed by computing the average price of a 
security over a specific number of periods. Most moving averages are based on 
closing prices; for example, a 5-day simple moving average is the five-day sum of 
closing prices divided by five. As its name implies, a moving average is an average 
that moves. Old data is dropped as new data becomes available, causing the  
average to move along the time scale. The example below shows a 5-day moving 
average evolving over three days. 

 

The first day of the moving average simply covers the last five days. The second 
day of the moving average drops the first data point (11) and adds the new data 
point (16). The third day of the moving average continues by dropping the first 



 
 

data point (12) and adding the new data point (17). In the example above, prices 
gradually increase from 11 to 17 over a total of seven days. Notice that the moving 
average also rises from 13 to 15 over a three-day calculation period. Also, notice 
that each moving average value is just below the last price. For example, the 
moving average for day one equals 13 and the last price is 15. Prices the prior four 
days were lower and this causes the moving average to lag. 

 

 
Periodic Signals 

 
A periodic signal is one that repeats the sequence of values exactly after a fixed 
length of time, known as the period. In mathematical terms a signal x(t) is periodic 
if there is a number T such that for all t Equation holds the following. 
x(t)=x(t+T) 

The smallest positive number T that satisfies Equation above is the period and it 
defines the duration of one complete cycle. The fundamental frequency of a 
periodic signal is given by Equation below 
f=1/T 

It is important to distinguish between the real signal and the quantitative 
representation, which is necessarily an approximation. The amount of error in the 
approximation depends on the complexity of the signal, with simple waveforms, 
such as the sinusoid, having less error than complex waveforms. 

 
A harmonic is a signal or wave whose frequency is an integral (whole-number) 
multiple of the frequency of some reference signal or wave. The term can also refer 
to the ratio of the frequency of such a signal or wave to the frequency of the 
reference signal or wave. 

 
Let f represent the main, or fundamental, frequency of an alternating current ( AC ) 

signal, electromagnetic field , or sound wave. This frequency,  usually  expressed  

in hertz , is the frequency at which most of the energy is contained, or at which the 

signal  is  defined  to  occur.  If  the   signal   is  displayed   on   an   oscilloscope, 

the waveform will appear to repeat at a rate corresponding to f Hz. 



 
 

For a signal whose fundamental frequency is f , the second harmonic has a 

frequency  2 f ,  the  third  harmonic  has   a   frequency   of   3 f ,   and   so   on.   

Let w represent the wavelength of the signal or wave in a specified medium. The 

second harmonic has a wavelength of w /2, the third harmonic has a wavelength    

of w /3, and so on. Signals occurring at frequencies of 2 f , 4 f , 6 f , etc. are called 

even harmonics; the signals at frequencies of 3 f , 5 f , 7 f , etc. are called odd 

harmonics. A signal can, in theory, have infinitely many harmonics. 

 
Nearly all signals contain energy at harmonic frequencies, in addition to the energy 

at the fundamental frequency. If all the energy in a signal is contained at the 

fundamental frequency, then that signal is a perfect sine wave. If the signal is not a 

perfect sine wave, then some energy is contained in the harmonics. Some 

waveforms contain large amounts of energy at harmonic frequencies. Examples are 

square waves, sawtooth waves, and triangular waves. 

 
 
 

IIR vs FIR Filters 
 

IIR filters are difficult to control and have no particular phase, whereas FIR filters 

make a linear phase always possible. IIR can be unstable, whereas FIR is always 

stable. IIR, when compared to FIR, can have limited cycles, but FIR has no limited 

cycles. IIR is derived from analog, whereas FIR has no analog history. IIR filters 

make polyphase implementation possible, whereas FIR can always be made casual. 

FIR filters are helpful to achieve fractional constant delays. #MAD stands for a 

number of multiplications and additions, and is used as a criterion for an IIR and 

FIR filter comparison. IIR filters require more #MAD when compared to FIR, 

because FIR is of a higher order in comparison to IIR, which is of lower order, and 

uses polyphase structures. 



 
 

FIR filters are dependent upon linear-phase characteristics, whereas IIR filters are 

used   for   applications   which   are   not   linear.    FIR’s   delay    characteristics  

is much better, but they require more memory. On the other hand, IIR filters are 

dependent on both i/p and o/p, but FIR is dependent upon i/p only. IIR filters 

consist of zeros and poles, and require less memory than FIR filters, whereas FIR 

only consists of zeros. IIR filters can become difficult to implement, and also delay 

and distort adjustments can alter the poles & zeroes, which make the filters 

unstable, whereas FIR filters remain stable. FIR filters are used for tapping of a 

higher-order, and IIR filters are better for tapping of lower-orders, since IIR filters 

may become unstable with tapping higher-orders. 

 
 
 

 
Analog to Digital Converter 

 
From the name itself it is clear that it is a converter which converts the analog 
(continuously variable) signal to digital signal. This is really an electronic 
integrated circuit which directly converts the continuous form of signal to discrete 
form. It can be expressed as A/D or A-to-D or A-D or ADC. The input (analog) to 
this system can have any value in a range and are directly measured. But for output 
(digital) of an N-bit A/D converter, it should have only 2N discrete values. This  
A/D converter is a linkage between the analog (linear) world of transducers and 
discreet world of processing the signal and handling the data. The digital to analog 
converter (DAC) carry out the inverse function of the ADC. The schematic 
representation of ADC is shown below. 



 
 

ADC Process 

There are mainly two steps involves in the process of conversion. They are 
 

• Sampling and Holding 
• Quantizing and Encoding 

 
The whole ADC conversion process is shown in figure 2. 

 
 
 

 
Sampling and Holding 

In the process of Sample and hold (S/H), the continuous signal will gets sampled 
and freeze (hold) the value at a steady level for a particular least period of time. It  
is done to remove variations in input signal which can alter the conversion process 
and thereby increases the accuracy. The minimum sampling rate has to be  two 
times the maximum data frequency of the input signal. 

 
Quantizing and Encoding 

For understanding quantizing, we can first go through the term Resolution used in 
ADC. It is the smallest variation in analog signal that will result in a variation in  
the     digital     output.     This     actually     represents     the     quantization   error. 

V  →  Reference   voltage  range 
2N   →   Number   of   states 
N →   Number  of  bits in   digital output 



 
 

Quantizing: It is the process in which the reference signal is partitioned into several 
discrete quanta and then the input signal is matched with the correct quantum. 

 
Encoding: Here; for each quantum, a unique digital code will be assigned and after 
that the input signal is allocated with this digital code. The process of quantizing 
and encoding is demonstrated in the table below. 

 

 
From the above table we can observe that only one digital value is used to  
represent the whole range of voltage in an interval. Thus, an error will occur and it 
is called quantization error. This is the noise introduced by the process of 

quantization. Here the maximum quantization error is  

Improvement of Accuracy in ADC 

Two important methods are used for improving the accuracy in ADC. They are by 
increasing the resolution and by increasing the sampling rate. This is shown in 



 
 

figure below (figure 3). 

 
Types of Analog to Digital Converter 

• Successive Approximation ADC: This converter compares the input signal 
with the output of an internal DAC at each successive step. It is the most 
expensive type. 

• Dual Slope ADC: It have high accuracy but very slow in operation. 
• Pipeline ADC: It is same as that of two step Flash ADC. 
• Delta-Sigma ADC: It has high resolution but slow due to over sampling. 
• Flash ADC: It is the fastest ADC but very expensive. 
• Other: Staircase ramp, Voltage-to-Frequency, Switched capacitor, tracking, 

Charge balancing, and resolver. 
Application of ADC 

• Used together with the transducer. 
• Used in computer to convert the analog signal to digital signal. 
• Used in cell phones. 
• Used in microcontrollers. 
• Used in digital signal processing. 
• Used in digital storage oscilloscopes. 
• Used in scientific instruments. 
• Used in music reproduction technology etc. 



 
 

Digital to Analog Converter or DAC 
 

Op amp is extensively used as main building block of digital to analog convertor. 
Digital to analog convertor is an electronics device in form of IC, which converts 
digital signal to its equivalent analog signal. The DAC can be realized in many ways. 
One of the popular digital to analog convertor circuit is binary weighted ladder. 
This is basically a summing amplifier designed with suitable resistances, as shown 
below. 

 

 
Now, applying Kirchhoff Current Law at node 1 of the above circuit, we get, 

 

Before going through the above circuit of digital to analog convertor, Let us  put 
some suitable values of different resistors connected in the circuit. Such as, Rf  = 10KΩ, 
R1  = 10KΩ, R2  = 20KΩ, R3  = 40KΩ and R4= 80KΩ. 
Putting these values in equation (i) we get, 

Now, let us also apply voltage at input terminals either 0 or 1 volt. Putting , 0 volt at all
 inputs,(i.e. v1 = 0, v2 = 0, v3 = 0 and v4 = 0) we get, 

 

So, for digital input 0000, we get analog output 0 volt. Putting, 1V at last input only, 
(i.e. v1  = 0, v2  = 0, v3  = 0 and v4  = 1V), we get, 



 
 

Similarly, for v1  = 0, v2  = 0, v3  = 1, v4  = 0 

For, v1  = 0, v2  = 0, v3  = 1, v4  = 1 

 

In this way the inputs and corresponding outputs can be represented in a table as 
shown below. 

 

Binary Input [v1 v2 v3 v4] Decimal Value Output(-v0) 

0000 0 0 

0001 1 0.125 

0010 2 0.25 

0011 3 0.375 

0100 4 0.5 

0101 5 0.625 

0110 6 0.75 

0111 7 0.875 

1000 8 1.0 

1001 9 1.125 

1010 10 1.25 



 

 

1011 11 1.375 

1100 12 1.5 

1101 13 1.625 

1110 14 1.75 

1111 15 1.875 

 

So, for each decimal  number there is one unique output voltage level. From the table  
it is also seen that, form 0 to 15, for each increment there is an increase of output 
voltage level by 0.125 volt. 
So, the output is analog and it is linearly proportional the decimal equivalent of digital 
inputs. The above example was of a four bit DAC. A four bit DAC can be represented 
as shown below. 

 

 
 

 
Sampling Theory 

 
The signals we use in the real world, such as our voices, are called "analog" signals. 
To process these signals in computers, we need to convert the signals to "digital" 
form. While an analog signal is continuous in both time and amplitude, a digital 
signal is discrete in both time and amplitude. To convert a signal from continuous 
time to discrete time, a process called sampling is used. The value of the signal is 
measured at certain intervals in time. Each measurement is referred to as a sample. 
(The analog signal is also quantized in amplitude, but that process is ignored in this 
demonstration. See the Analog to Digital Conversion page for more on that.) 

 
When the continuous analog signal is sampled at a frequency F, the resulting discrete 



 
 

signal has more frequency components than did the analog signal. To be precise, the 
frequency components of the analog signal are repeated at the sample rate. That is, in 
the discrete frequency response they are seen at their original position, and are also 
seen centered around +/- F, and around +/- 2F, etc. 

 
How many samples are necessary to ensure we are preserving the information 
contained in the signal? If the signal contains high frequency components, we will 
need to sample at a higher rate to avoid losing information that is in the signal. In 
general, to preserve the full information in the signal, it is necessary to sample at 
twice the maximum frequency of the signal. This is known as the Nyquist rate. The 
Sampling Theorem states that a signal can be exactly reproduced if it is sampled at a 
frequency F, where F is greater than twice the maximum frequency in the signal. 

 
What happens if we sample the signal at a frequency that is lower that the Nyquist 
rate? When the signal is converted back into a continuous time signal, it will exhibit a 
phenomenon called aliasing. Aliasing is the presence of unwanted components in the 
reconstructed signal.  These components were not present when the original signal  
was sampled. In addition, some of the frequencies in the original signal may be lost in 
the reconstructed signal. Aliasing occurs because signal frequencies can overlap if the 
sampling frequency is too low.  Frequencies "fold" around half the sampling  
frequency - which is why this frequency is often referred to as the folding frequency. 

 
Sometimes the highest frequency components of a signal are simply noise, or do not 
contain useful information. To prevent aliasing of these frequencies, we can filter out 
these components before sampling the signal. Because we are filtering out high 
frequency components and letting lower frequency components through, this is known 
as low-pass filtering. 

 
 

Demonstration of Sampling 

 
The original signal in the applet below is composed of three sinusoid functions, each 
with a different frequency and amplitude.  The example here has the frequencies 28 
Hz, 84 Hz, and 140 Hz. Use the filtering control to filter out the higher frequency 
components. This filter is an ideal low-pass filter, meaning that it exactly preserves 
any frequencies below the cutoff frequency and completely attenuates any frequencies 



 
 

above the cutoff frequency. 

 
Notice that if you leave all the components in the original signal and select a low 
sampling frequency, aliasing will occur. This aliasing will result in the reconstructed 
signal not matching the original signal. However, you can try to limit the amount of 
aliasing by filtering out the higher frequencies in the signal. Also important to note is 
that once you are sampling at a rate above the Nyquist rate, further increases in the 
sampling frequency do not improve the quality of the reconstructed signal.  This is 
true because of the ideal low-pass filter.  In real-world applications, sampling at 
higher frequencies results in better reconstructed signals. However, higher sampling 
frequencies require faster converters and more storage. Therefore, engineers must 
weigh the advantages and disadvantages in each application, and be aware of the 
tradeoffs involved. 

 
The importance of frequency domain plots in signal analysis cannot be understated. 
The three plots on the right side of the demonstration are all Fourier transform plots. 
It is easy to see the effects of changing the sampling frequency by looking at these 
transform plots. As the sampling frequency decreases, the signal separation also 
decreases. When the sampling frequency drops below the Nyquist rate, the 
frequencies will crossover and cause aliasing. 


