Department of Computer Science & Engineering

LAB MANUAL
Subject-DIP(6" sem)

Index

Lab 1: Write a program for image enhancement
Lab2: Write a program for image compression
Lab3: Write a program for color image processing
Lab4: Write a program for image segmentation
Lab 5: Write a program for image morphology
Lab 6: Image Restoration

Lab 7: Edge detection

Lab 8: Blurring 8 bit color versus monochrome
Mini Project (Select One)

1. Take a hand written document, Perform preprocessidgry to segment
into characters
2. Take an image, design fuzzy rules for content bawade retrieval.

3. Take an image, design a neural network for coriiaséd image retrieval.

LAB 1: Write a program for image enhancement
Adjusting Intensity Values to a Specified Range

You can adjust the intensity values in an imagagitfie imadjust function, where you
specify the range of intensity values in the outmage.

For example, this code increases the contrastawaontrast grayscale image by remapping
the data values to fill the entire intensity rafi@e255].

| = imread(‘pout.tif');
J = imadjust(l);
imshow(J)

figure, imhist(J,64)

This figure displays the adjusted image and itsojimm. Notice the increased contrast in the
image, and that the histogram now fills the entirege.

Specifying the Adjustment Limits

You can optionally specify the range of the inpatues and the output values using imadjust.
You specify these ranges in two vectors that yas pga imadjust as arguments. The first vector
specifies the low- and high-intensity values thai want to map. The second vector specifies the
scale over which you want to map them.

For example, you can decrease the contrast of agerhy narrowing the range of the data. In the
example below, the man's coat is too dark to reapgldetail. imadjust maps the range [0,51] in
the uint8 input image to [128,255] in the outputga. This brightens the image considerably,
and also widens the dynamic range of the dark gustiof the original image, making it much
easier to see the details in the coat. Note, homvévat because all values above 51 in the original
image are mapped to 255 (white) in the adjusted@ntne adjusted image appears washed out.

| = imread(‘cameraman.tif;

J = imadjust(l,[0 0.2],[0.5

1]); imshow(l)

figure, imshow(J)

Setting the Adjustment Limits Automatically

To use imadjust, you must typically perform twopsteView the histogram of the image to
determine the intensity value limits. Specify thésgts as a fraction between 0.0 and 1.0 so that
you can pass them to imadjust in the [low_in highvector.

For a more convenient way to specify these limite the stretchlim function. (The imadjust
function uses stretchlim for its simplest syntamadjust(l).)

This function calculates the histogram of the imagel determines the adjustment limits
automatically. The stretchlim function returns #heslues as fractions in a vector that you can
pass as the [low_in high_in] argument to imadjf@stexample:

| = imread('rice.png?;

J = imadjust(l,stretchlim(1),[0 1]);

By default, stretchlim uses the intensity valuest tlepresent the bottom 1% (0.01) and the top
1% (0.99) of the range as the adjustment limits.tidyming the extremes at both ends of the

intensity range, stretchlim makes more room in ddgisted dynamic range for the remaining

intensities. But you can specify other range limiisan argument to stretchlim. See the stretchlim
reference page for more information.

Gamma Correction

imadjust maps low to bottom, and high to top. Bjad#, the values between low and high are
mapped linearly to values between bottom and topekample, the value halfway between low
and high corresponds to the value halfway betwettotm and top.

imadjust can accept an additional argument thatipe the gamma correction factor.

Depending on the value of gamma, the mapping betwakies in the input and output images
might be nonlinear. For example, the value halflvatween low and high might map to a value
either greater than or less than the value haltveyeen bottom and top.

Gamma can be any value between 0 and infinity.athga is 1 (the default), the mapping is
linear. If gamma is less than 1, the mapping igheid toward higher (brighter) output values. If
gamma is greater than 1, the mapping is weightedrblower (darker) output values.

The figure below illustrates this relationship. Ttheee transformation curves show how values
are mapped when gamma is less than, equal to, @adeg than 1. (In each graph, the x-axis
represents the intensity values in the input imagd,the y-axis represents the intensity values in
the output image.)

The example below illustrates gamma correction.iddothat in the call to imadjust, the data
ranges of the input and output images are specde@mpty matrices. When you specify an
empty matrix, imadjust uses the default range df][0n the example, both ranges are left empty;
this means that gamma correction is applied witlaoytother adjustment of the data.

[X,map] = imread(‘forest.tif")

| = ind2gray(X,map);

J = imadjust(l,[],[],0.5);

imshow(l)

figure, imshow(J)

Lab 2: Write a program for image compression

Aa standard matlab wavelet code packa@AVELAB 802, to perform the transforms.
The wavelets we chose to use were the Deslaurigvslets of polynomial size 3.

The compression scheme we used was to set a thtestioe that was some fraction of the norm
of the entire wavelet transform matrix. If the miwgde of a wavelet in the representation was not
larger than this value, it was not included in¢benpression. We then rebuilt an image which (to
some degree that depended on how many bases wdedgiresembed the original image by
running the inverse transform.

ORIGINAL IMAGE
The fabulous Lena

BASIS VECTORS

These are some basis vectors obtained by runningtierse wavelet transform on a
matrix with a single nonzero value in it.

Deslaurier(1,1)

Deslaurier(10,10)

Deslaurier(16,16)

Deslaurier(4,2)

COMPRESSED IMAGES
Threshold = .5, Bases included = 19, Compressitim ¥a3400 : .

Threshold = 1, Bases included = 470, Compressitim *¥al40; .

Threshold = 2, Bases included = 2383, Compressitio #27 : 1

Threshold = 4, Bases included = 6160, Compressitio + 10:=

Threshold = 8, Bases included = 12378, Compressitim= 50

MATLAB CODE

load/home/nirav/elec301/lena256.n
imagesc(lena256); colormap(gray(25

[gmf, dgmf] = MakeBSFilter('Deslauriers’,

% The MakeBSFilter function creates biorthonormaeéfilpairs. The filte
% pairs that we're making is an Interpolating (Desée-Dubuc) filter
% of polynomial degree 3

wc = FWT2_PB(lena256, 1, gmf, dgn

% wc correspond to the wavelet coefficients of themgla imag

% FWT2_PB is a function that takes a 2 dimensionalelet transforr
% We specify the image matrix, the level of coarsse(1), the quadrature
% mirror filter (gmf), and the dual quadrature mirfiter (dgmf)

% we take a tolerance which is some frac
% of the norm of the sample ime

nl = norm(lena256) / (4 * norm(size(lena25¢

% if the value of the wavelet coefficient mrix at a particular
% row and column is less than the tolerance, wevthitaul
% and increment the zero cot

zerocount = 0;
fori=1:256
forj=1:256

if (abs(wc(i,j)) < nl)

we(i,j) = 0;
zerocount = zerocount +
1; end
end
end

X = IWT2_PB(wc, 1, gmf, dgmf);
imagesc(x);

% here is some sample code to view how these deslmwavelets look

[gmf, dgmf] = MakeBSFilter('Deslauriers’,
3); fori = 1:256
forj=1:256
wc(i,j) = 0;
end
end

% this is the Deslauriers(4,2) matrix
wc(4, 2) = 1000;

X = IWT2_PB(wc, 1, gmf, dgmf);
imagesc(x);

LAB 3: Write a program for color image processing

Color Approximation

To reduce the number of colors in an image, usedgh2ind function. This function converts a
truecolor image to an indexed image, reducing thebrer of colors in the process. rgb2ind
provides the following methods for approximating ttolors in the original image: Quantization
Uniform quantization Minimum variance quantizatiGolormap mapping

The quality of the resulting image depends on thgr@imation method you use, the range of
colors in the input image, and whether or not yse dithering. Note that different methods work
better for different images. See Dithering for aalgtion of dithering and how to enable or
disable it.

Quantization

Reducing the number of colors in an image involgaantization. The function rgb2ind uses
guantization as part of its color reduction aldorit rgb2ind supports two quantization methods:
uniform quantization and minimum variance quaniorat

An important term in discussions of image quaniiratis RGB color cube, which is used
frequently throughout this section. The RGB colobe is a three-dimensional array of all of the
colors that are defined for a particular data tyiace RGB images in MATLAB can be of type
uint8, uintl6, or double, three possible color culedinitions exist. For example, if an RGB
image is of class uint8, 256 values are defineceémh color plane (red, blue, and green), and, in
total, there will be 224 (or 16,777,216) colorsidedl by the color cube. This color cube is the
same for all uint8 RGB images, regardless of whidlors they actually use.

The uint8, uintl6, and double color cubes all hdneesame range of colors. In other words, the
brightest red in a uint8 RGB image appears the sesrtbe brightest red in a double RGB image.
The difference is that the double RGB color cubg fmany more shades of red (and many more
shades of all colors). The following figure showsRGB color cube for a uint8 image.

Quantization involves dividing the RGB color culvéoi a number of smaller boxes, and then
mapping all colors that fall within each box to ttw@or value at the center of that box.

Uniform quantization and minimum variance quanta@atdiffer in the approach used to divide
up the RGB color cube. With uniform quantizatiohe tcolor cube is cut up into equal-sized
boxes (smaller cubes). With minimum variance quaititon, the color cube is cut up into boxes
(not necessarily cubes) of different sizes; thesiaf the boxes depend on how the colors are
distributed in the image.

Uniform Quantization. To perform uniform quantizatj call rgb2ind and specify a tolerance.
The tolerance determines the size of the cube-shbpres into which the RGB color cube is
divided. The allowable range for a tolerance sgti#0,1]. For example, if you specify a

tolerance of 0.1, the edges of the boxes are arib-the length of the RGB color cube and the
maximum total number of boxes is
n = (floor(1/tol)+1)"3

The commands below perform uniform quantizatiorhwitolerance of 0.1.
RGB = imread('peppers.png?;
[X,map] = rgh2ind(RGB, 0.1);

The following figure illustrates uniform quantizati of a uint8 image. For clarity, the figure
shows a two-dimensional slice (or color plane) fritva color cube where red=0 and green and
blue range from 0 to 255. The actual pixel valuesdenoted by the centers of the x's.

After the color cube has been divided, all emptydsoare thrown out. Therefore, only one of the
boxes is used to produce a color for the colorrdepshown earlier, the maximum length of a
colormap created by uniform quantization can belipted, but the colormap can be smaller than
the prediction because rgb2ind removes any cdhatsdo not appear in the input image.

Minimum Variance Quantization. To perform minimurariance quantization, call rgh2ind and
specify the maximum number of colors in the ouimege's colormap. The number you specify
determines the number of boxes into which the R@Brccube is divided. These commands use
minimum variance quantization to create an indameje with 185 colors.

RGB = imread('peppers.png');

[X,map] = rgh2ind(RGB, 185);

Minimum variance quantization works by associafigels into groups based on the variance
between their pixel values. For example, a setlué pixels might be grouped together because
they have a small variance from the center pix¢hefgroup.

In minimum variance quantization, the boxes thatddi the color cube vary in size, and do not
necessarily fill the color cube. If some areashaf tolor cube do not have pixels, there are no
boxes in these areas.

While you set the number of boxes, n, to be usedybg2ind, the placement is determined by the
algorithm as it analyzes the color data in yourgmaOnce the image is divided into n optimally
located boxes, the pixels within each box are mappehe pixel value at the center of the box,
as in uniform quantization.

The resulting colormap usually has the number ¢iesiyou specify. This is because the color
cube is divided so that each region contains &t leae color that appears in the input image. If
the input image uses fewer colors than the numbarspecify, the output colormap will have
fewer than n colors, and the output image will aimall of the colors of the input image.

The following figure shows the same two-dimensicsiade of the color cube as shown in the
preceding figure (demonstrating uniform quantizaticEleven boxes have been created using
minimum variance quantization.

For a given number of colors, minimum variance duation produces better results than
uniform quantization, because it takes into accoth® actual data. Minimum variance
guantization allocates more of the colormap entidesolors that appear frequently in the input
image. It allocates fewer entries to colors thateagp infrequently. As a result, the accuracy of the
colors is higher than with uniform quantizationr Example, if the input image has many shades
of green and few shades of red, there will be ngoeens than reds in the output colormap. Note
that the computation for minimum variance quantimattakes longer than that for uniform
guantization.

Colormap Mapping

If you specify an actual colormap to use, rgb2inseas colormap mapping (instead of

guantization) to find the colors in the specifielatmap that best match the colors in the RGB
image. This method is useful if you need to créateges that use a fixed colormap. For example,
if you want to display multiple indexed images an&abit display, you can avoid color problems

by mapping them all to the same colormap. Colormapping produces a good approximation if

the specified colormap has similar colors to thiosthe RGB image. If the colormap does not

have similar colors to those in the RGB image, théthod produces poor results.

This example illustrates mapping two images toghmme colormap. The colormap used for the
two images is created on the fly using the MATLABétion colorcube, which creates an RGB

colormap containing the number of colors that ypac#y. (colorcube always creates the same
colormap for a given number of colors.) Becausectiiermap includes colors all throughout the

RGB color cube, the output images can reasonalgsoapnate the input images.

RGB1 = imread('autumn.tif');

RGB2 = imread('peppers.png";

X1 =rgh2ind(RGB1,colorcube(128));

X2 =rgb2ind(RGB2,colorcube(128));

Lab 4: Write a program for image segmentation
demonstration of global and local thresholdingfegmentation

% threshdemo.m
% Demonstration of global and local threshold opereatiof an image

clear all

[tmp,idx]=imread('lena.bmp");

a=ind2gray(tmp,idx); % gray scale image of lendyedetween 0 and 1
clear tmp idx

figure(1),clf,colormap(‘gray’),imshow(a),title(‘ghhal Lena

image") [m,n]=size(a); % size of image a

b=reshape(a,m*n,1); % into a column vector
figure(2),hist(b,50),title(‘histogram of image")

% first do global thresholding

mu=rand(2,1); % value betwen 0 and 1, two clusiatg
[W,iter,Sw,Sb,Coval=kmeansf(b,mu);% W is the mean,

% Cova is the covariance matrices

% member: membership of each X: K by 1 vector of eeta 1 to c
[d,member]=kmeantest(b,sort(W));

c=reshape(member-1,m,n);

clear d member b

figure(3),clf,colormap(‘'gray'),imshow(c)

title(‘global threshold")

% next do local threshold, partition the image intoxd64 blocks
% and do threshold within each block
c=zeros(512,512); trials=0;
for i=1:8,
for j=1:8,
trials=trials+1;
disp([int2str(trials) ' of 64 iterations ...");
tmp=a(64*(i-1)+1:64*,64*(j-
1)+1:64%); tmpi=reshape(tmp,64*64,1);
mu=sort(rand(2,1)); % value betwen 0 and 1, twatels only
[W,iter,Sw,Sb,Coval=kmeansf(tmpi,mu);% W is the mea
% Cova is the covariance matrices
% member: membership of each X: K by 1 vector of elet® 1 to ¢
[d,member]=kmeantest(tmpi,sort(W)); c(64*(i-1)+1*684*(j-
1)+1:64*)=reshape(member,64,64);
end
end
figure(4),clf,colormap(‘gray’),imshow(c-
1), title('local threshold, 64x64 block");

%

Lab 5: Write a program for image morphology

demonstrate boundary extraction, interior filling

% demonstrate morphological boundary extraction
clear all, close all

AO=imread('myshap4.bmp");

imshow(AO0); % a heart shape hand drawing
title(‘original image";

pause

% AO contains mostly 1s and the drawing containuba8
Al=1-double(A0); % invert black and white

B=ones(3);
A2=imopen(imclose(A1,B),B); % fill 1 pixel hole amdmove sticks

A3=imfill(A2,[100 100]); % fill the interior
A=double(A2) + double(A3);
imshow(A),title(‘after interior filling using
imfill'); pause

Ab=A-double(erode(A,B));

imshow(Ab), title(‘extracted boundary";
clear A1 A2 A3; Ac=Ab;

vidx=[[1:20:280] 280];

Ac(vidx,:)=1; Ac(:,vidx)=1;

imshow(Ac)

Lab 6: Program for Image Restoration

% load image

X = double(imread('midterm.bmp"));
X = X-mean(X(3));
[m,n] = size(X);

% show image and

DFT X = fft2(X);

figure(1)

imshow(real(X),[]);

title(‘original

image’) figure(2)
imshow(fftshift(log(1+abs(fX))),[1)
titte('log(1+|DFT])) original image");

% model blurring

filter s = 24; t= 0;

u=1; v=0;

g = [ones(s,1);zeros(m-s-t,1); ones(t,1)];
%g = [ones(s,1);0.99; zeros(m-s-t-2,1);0.99;
ones(t,1)]; g = g/sum(abs(9));

h = [ones(u,1); zeros(n-u-v,1);
ones(v,1)]; h = h/sum(abs(h));

f=g*h’;

ff =fft2(f);

figure(3)

imshow(fftshift(log(1+abs(ff))),[])
titte(amplitude: log(1+|OTF|)");

figure(4)

imshow(fftshift(angle(ff)),[])

titte('phase of OTF");

% get pseudo inverse filter
ff(find(abs(ff)==0))=NaN;

aff = abs(ff);

pff = ff./aff;

apiff = 1./aff;

ppiff = conj(pff);
ppiff(find(isnan(ppiff))) =

0; cap = 11,

apiff(find(apiff > cap)) =
cap; apiff(find(isnan(apiff)))
= 0; piff = apiff.*ppiff;

% deblur and show

frX = piff.*fX;

rX =real(ifft2(frX));

figure(5)
imshow(fftshift(log(1+abs(frX))),[])

titte('log(1+|DFT])) restored
image") figure(6)
imshow(rX(:,5:n),[1);
title(‘restored image")

Lab 7: Program for Edge detection
% demonstrate edge detection

% numbers of
colors sncols=128;
ncols=32;

% get image from MATLAB
image load('trees");

% show original image
figure(1);
showgimg(real(X),sncols);
drawnow;

% construct convolution

functions [m,n] = size(X);

gs =[1-1]; ge =];

hs =[1-1]; he = [];

g = [gs,zeros(1,m-length(gs)-length(ge)),gel];
h = [hs,zeros(1,n-length(hs)-length(he)),he];

% construct convolution matrices as sparse
matrices Y = spcnvmat(g);

Z = spcnvmat(h);

Wg = Y*X;

Wh = X*Z',

% show transformed
images figure(2);
showgimg(Wg,ncols);
drawnow;

figure(3)
showgimg(Wh,ncols);
drawnow;

figure(4)
showgimg(abs(Wg)+abs(Wh),ncols);
drawnow;

Lab 8: Blurring 8 bit color versus monochrome

% smoothing in eight bit color and monochrome
% parameter definition

% getimagefrom MATLAB
library load('clown");

% construct convolution

functions [m,n] = size(X);

gs =[0.50.5]; ge =];

hs =[0.5 0.5]; he =];

g =[gs,zeros(1,m-length(gs)-length(ge)),ge];
h = [hs,zeros(1,n-length(hs)-length(he)),he];

% construct convolution matrices and blur sparse
matrices Y = spcnvmat(g);

Z = spcnvmat(h);

W = Y*X*Z',

% show original and blurred
images figure(1);
imshow(X,[]);
figure(2);
imshow(W,[]);
figure(3);
imshow(X,[]);
colormap(map)
figure(4);
imshow(W,[]);
colormap(map)

Mini Project

Segmentation in handwritten document

Horizontal and Vertical Histogram

Horizontal and Vertical Histogram technique is ¢ime handwritten script identified technique which
uses the Matra/Shirorekha based feature, In thimigque longest horizontal run of black pixels ba t
rows of a Bangla text word will be much longer thiat of English script. This is so because the
characters in a Bangla word are generally conndxyedatra/Shirorekha (see Fig.2). Here row-wise
histogram of the longest horizontal run is showthmright part of the words. This information Heeen
used to separate English from Bangla script. Miaaéure is considered to be present in a wordhelf t
length of the longest horizontal run of the wortistes the following two conditions: (a) if it greater
than 45% of the width of a word, and (b) if it isegter than thrice of the height of busy-zone.

SNSaEewsE—
Mukkm{)u.!,

Fig. 2. The matra/Shiroreka feature in Bangla and Bglish words

Curvature Information and Local Extreme of Curvature

Curvature information gives a unique, viewpointdépdndent description for local shape. In
differential geometry, it is well known that a saré can be reconstructed up to second order (efaregpt
constant term) if the two principal curvatures atlepoint is known, by using the first and second
fundamental forms Therefore, curvature informapoavides a useful shape descriptor for variousstask
computer vision, ranging from image segmentatichfeature extraction, to scene analysis and object
recognition . In the field of handwritten alphanuioeharacter recognition , many researcher use
difference method for recognition such as geomataad topological feature , statistic featured ather
algorithms to perform recognition based on charatiape. But for a good handwritten recognition
system depends on main two attributes, first setefgature gathering from a handwritten character,
second the recognizers that trained to remembairrieaf each character in order to cluster andgeize
each input character. In curvature information lenitten character is used as a sequence of curve
segments. Each curve segment is characterized Hggree of curvature which is measure by the
cumulative angle difference from all sampling peintith in the segments. If the cumulative is mints,
a clockwise curve. Since some characters may dasfdise same number of segments with the same
curve (ex. one segment with clockwise curve) ofbatures of segments are gathering to distingties t

characters.

Topological Features

Topological features such as loops is a group adfengixels surrounded by black ones ,end points is
point with exactly 1 neighboring point ,dots a ¢tkrof say 1-3 pixels and junction is a point witlre
than 2 neighbors all in thinned black and whitegesmare shown in fig 3.

P Pl

Fig.3. Loop, End points, a Dot and Junctions.

Dots: Dots abovehe letters “i” and “j” can be identified with ansple set of rules. Short, isolated strokes
occurring on or above the half-line are markedaemgial dots.

Junctions: Junctions occur where two strokes meet or crossaeméasily found in the skeleton as
pointswith more than two neighbors.

Endpoints: Endpoints are points in the skeleton with only aeghbor and mark the ends of
strokesthough some are artifacts of the skeletonizatigoradhm.

Loops: Loops are found from connected-component analysih® smoothed image, to find areas of
background color not connected to the region sumalimg the word. A loop is coded by a number
representing its area.

Parameters of polynomials

Recognition for handwritten mathematical expressigmmore complicated than for ordinary handwriting
because of the two-dimensional nature of the inpetause there are more symbols involved, and
because the greater difficulty of using contextnfdrmation (e.g. harder to provide a dictionaryafrds

or phrases against which the input is probably egfiiom). Since past techniques have not provided a
complete solution. To overcome this problem wepe@meters of polynomial as one of the technique
for feature extraction. Here we take the idea oél@3ishev polynomials. Using a collection of writing
samples of mathematical symbols, we find that imyrzases it provides a succinct way to model the
stylus movements of actual test users. The prihcipatributions of this technique are:

* To find that modeling x(t) and y(t) as Chebyshenieseaccurately captures the shape of handwritten
mathematical characters using few parameters.

* To find the polynomial coefficients from the wrigirsamples form clusters which often contain the
same character as written by different test users.

For our analysis, we assume that handwriting traceprovided as sequences of (xi, yi, ti) tuptes t
have been normalized sp+ 0 and = 1. The (x,y) trace of character is shown in ffegd. For basis

functions we use Chebyshev polynomials of the Kistl, defined by F(t) = cos(n arccos t) and
orthonormal for the inner product (f, g ¥ t)g(t)dt with limit (-1,1)t. The Chebyshev series for X and Y
is

X(t) = X oiTi(t)
i=0

Y() = X BiTi(t)
i=0

18 Cokaoban Gusy X 8 W N sl Tagras. 3 : Y Ry Daprie

The (x, y) trace of G

Contour Information

Given a binary image, it is scanned from top tddratand right to left, and transitions from white
(background) to black (foreground) are detectea: ddmtour is traced counterclockwise outside thtepa
(clockwise for interior contours) and expressedrasrray of contour elements shown in figure 5hEac
contour element represents a pixel on the contedircantains fields for the x,y coordinates of tirep
the slope or direction of the contour into the pimad auxiliary information such as curvature.

Techniques that are useful in recognition of wardsdescribed in this subsection: (i) Determinatb
upper and lower contours of the word, (ii) Deteration of significant local extrema on the contc
(iii) Determination of reference lines, and (iv) Deteration of word lengtt

1. Upper and lower contours:Division of an exterior contour into upper and lowearts (Figure 6) involvt
the detection of two “turnover” points on the camt- the points at whickhe lower contour changes to up
contour and vice versa. Given that the exteriot@anis traced in the counterclockwise directidrg tippel
contour runs predominantly from right to left ahé fower predominantly from left to right. The leftd of
the leading ligature and the right end of the egdigature constitute turnover poir

b\ P £ —— Py —
i S
e o h

Y
C AN
. 8

y \/ ,f;/ o I/

Lt LA A
el

Splitting a contour to upper and lower parts. The yper contour is shown in
dotted lines and the lower contour is shown in boldines

2. Local Contour Extrema: Local extrema represent a powerful abstractiomefshape of the wol
Local Y-extrema is simply derived from th~coordinates of the pixels on the chaincoded confbue
primary challenge is the detection and rejectiospafricus extrema arising from irregularities in 1
contour. Heuristic filters are used to eliminaterspus extrema. These include checks on the distaf
the detected extremum from previous extrema detesfmtial postion relative to other extrema, lope
of the contour in the neighborhood of the extremand so forth. Majority of spurious extreme
discrete writing are due to ends of strokes usddrta characters, and generally occur in the middiee
of the word. Fragmentation in the binary im due to suboptimal binarization or poor resolutiftero
leads to broken strokes and spurious extrema. $irecepper contour flows effectively from rightlégdt,
left to right excursions of the contour must bddaied by right to left retraces, ands leads to
additional extrema being detected. Extrema foundumi uncharacteristic excursions must be disce
lest they lead to spurious ascenders. A similablpra arises with rigl-to-left stretches of the lowt
contour in the context of spuriousscenders. Let us refer to extrema on such unclesistat excursion
of the upper and lower contours as being directipiavalid. Directional validity is convenientl
determined from the slopes of the contour elemiatdsand out of the extremum ars sufficient to
discard most spurious extrema.

3. Reference Line:

A time-tested technique for global reference lie&edmination is based on the vertical histograrpixéls

. The method makes the implicit assumption thattbed was written horizontally and scanned in
without skew. Consequently, the method fails fordgowith significant baseline skew. Unfortunately,
baseline skew is present to varying degrees in frestorm handwriting. Baseline skew can be coect
by estimating the skew of the word and applyingtation or shear transformation on the image. An

alternative to skew correction is the use of rafeedines of the formj{x)= m *x+c where m is the skew

angle and c is the offset of the correspondingresfee line from the x-axis. Angled reference limesy be
computed from the angular histogram at the skevieang

The best-fit line through the minima points mayde¢ermined by a least-square linear regression
procedure (Figure 7). Minima that do not fall ire thicinity of the implicit baseline either correspbto
descenders, or are spurious. The halfline may terméned as the regression line through upper
contour maxima. However upper contour maxima aengboorly aligned, and spurious points are
difficult to detect and remove, especially in mdigcrete writing (non-cursive) styles. Consequetitty
resulting halfline is often erroneous. Referennedicomputed from the angular histogram at the skew
angle of the baseline have proved to be more teligigure 7(c)).

2 1) Al A N
l‘.l‘ozy @MLJ‘\L\ el 'i e g;\?,f%h{‘} e
v U i
a) b) c)

. (a) Exterior contour of word showing lower-contou minima. (b) Baseline determined as regression
line through minima. (c) Angular reference lines fom angular histogram at skew angle.

4.Word Length, Ascenders, and Descender§:he number of minima on the lower contour of a word
image is a good estimate of the length of a wdrid. éxpected that such a length would be propwatito
the number of letters in the word. Figure 4 shdvesléngth estimate of the word as 11 and also shows
one ascender and one descender. The positionssdraters and descenders along with the lengtteof th
word are used as features. An ascender referg toatttion of a letter in a word that rises abowe th
general body of the word. A descender refers tgtréon of the word that falls below the generadlp

of the word. Ascenders and descenders can be ajgisdp selected from the extremas of the upper and
lower contour of the word.

Local contour extrema: maximas and minimas on thexaerior and interior
contours are marked along with the reference linesThe loop associated with

‘b’ that rises above the reference lines in the midle is called an ascender and

the loop associated with the 'g’ that falls belowtte reference lines in the middle
is called a descender.

